Все существующие стандарты Wi-Fi-сетей. Стандарты Wi-Fi Что означает 802.11 b g n

О новом стандарте беспроводной связи IEEE 802.11n говорят уже не первый год. Оно и понятно, ведь один из главных недостатков существующих стандартов беспроводной связи IEEE 802.11a/b/g - слишком низкая скорость передачи данных. Действительно, теоретическая пропускная способность протоколов IEEE 802.11a/g составляет всего 54 Мбит/с, а реальная скорость передачи данных не превышает 25 Мбит/с. Новый же стандарт беспроводной связи IEEE 802.11n должен обеспечить скорость передачи до 300 Мбит/с, что на фоне 54 Мбит/с выглядит весьма заманчиво. Конечно же, реальная скорость передачи данных в стандарте IEEE 802.11n, как показывают результаты тестирования, не превышает 100 Мбит/с, однако даже в этом случае реальная скорость передачи данных оказывается вчетверо выше, чем в стандарте IEEE 802.11g. Стандарт IEEE 802.11n еще окончательно не принят (это должно произойти до конца 2007 года), однако уже сейчас практически все производители беспроводного оборудования приступили к выпуску устройств, совместимых с предварительной (Draft) версией стандарта IEEE 802.11n.
В настоящей статье мы рассмотрим базовые положения нового стандарта IEEE 802.11n и основные его отличия от стандартов 802.11a/b/g.

О стандартах беспроводной связи 802.11a/b/g мы уже достаточно подробно рассказывали на страницах нашего журнала. Поэтому в данной статье мы не будем во всех деталях описывать их, однако, чтобы основные отличия нового стандарта от его предшественников были очевидны, придется сделать дайджест ранее опубликованных статей по этой теме.

Рассматривая историю стандартов беспроводной связи, используемых для создания беспроводных локальных сетей (Wireless Local Area Network, WLAN), наверное, стоит вспомнить о стандарте IEEE 802.11, который хотя уже и не встречается в чистом виде, но является прародителем всех остальных стандартов беспроводной связи для сетей WLAN.

Стандарт IEEE 802.11

В стандарте 802.11 предусмотрено использование частотного диапазона от 2400 до 2483,5 МГц, то есть диапазона шириной 83,5 МГц, разбитого на несколько частотных подканалов.

В основе стандарта 802.11 лежит технология уширения спектра (Spread Spectrum, SS), которая подразумевает, что первоначально узкополосный (в смысле ширины спектра) полезный информационный сигнал при передаче преобразуется таким образом, что его спектр оказывается значительно шире, чем спектр первоначального сигнала. Одновременно с уширением спектра сигнала происходит и перераспределение спектральной энергетической плотности сигнала - энергия сигнала также «размазывается» по спектру.

В протоколе 802.11 применяется технология уширения спектра методом прямой последовательности (Direct Sequence Spread Spectrum, DSSS). Суть ее заключается в том, что для уширения спектра первоначально узкополосного сигнала в каждый передаваемый информационный бит встраивается чиповая последовательность, которая представляет собой последовательность прямоугольных импульсов. Если длительность одного чипового импульса в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n раз больше ширины спектра первоначального сигнала. При этом амплитуда передаваемого сигнала уменьшится в n раз.

Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательностями), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.

Как уширить спектр сигнала и сделать его неотличимым от естественного шума - понятно. Для этого, в принципе, можно воспользоваться произвольной (случайной) чиповой последовательностью. Однако возникает вопрос, как такой сигнал принимать. Ведь если он становится шумоподобным, то выделить из него полезный информационный сигнал не так-то просто, если вообще возможно. Тем не менее сделать это можно, но для этого нужно соответствующим образом подобрать чиповую последовательность. Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определенным требованиям автокорреляции. Под автокорреляцией в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал можно будет выделить на уровне шума. Для этого в приемнике полученный сигнал умножается на чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал опять становится узкополосным, поэтому его фильтруют в узкой полосе частот, равной удвоенной скорости передачи. Любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приемника.

Чиповых последовательностей, отвечающих указанным требованиям автокорреляции, существует достаточно много, но для нас особый интерес представляют так называемые коды Баркера, поскольку именно они используются в протоколе 802.11. Коды Баркера обладают наилучшими среди известных псевдослучайных последовательностей свойствами шумоподобности, что и обусловило их широкое применение. В протоколах семейства 802.11 используется код Баркера длиной в 11 чипов.

Для того чтобы передать сигнал, информационная последовательность бит в приемнике складывается по модулю 2 (mod 2) c 11-чиповым кодом Баркера с использованием логического элемента XOR (исключающее ИЛИ). Таким образом, логическая единица передается прямой последовательностью Баркера, а логический нуль - инверсной последовательностью.

В стандарте 802.11 предусмотрено два скоростных режима - 1 и 2 Мбит/с.

При информационной скорости 1 Мбит/с скорость следования отдельных чипов последовательности Баркера составляет 11x106 чипов в секунду, а ширина спектра такого сигнала - 22 МГц.

Учитывая, что ширина частотного диапазона равна 83,5 МГц, получаем, что всего в данном частотном диапазоне можно уместить три неперекрывающихся частотных канала. Весь частотный диапазон, однако, принято делить на 11 частотных перекрывающихся каналов по 22 МГц, отстоящих друг от друга на 5 МГц. К примеру, первый канал занимает частотный диапазон от 2400 до 2423 МГц и центрирован относительно частоты 2412 МГц. Второй канал центрирован относительно частоты 2417 МГц, а последний, 11-й канал - относительно частоты 2462 МГц. При таком рассмотрении 1, 6 и 11-й каналы не перекрываются друг с другом и имеют 3-мегагерцевый зазор друг относительно друга. Именно эти три канала могут применяться независимо друг от друга.

Для модуляции синусоидального несущего сигнала при информационной скорости 1 Мбит/с используется относительная двоичная фазовая модуляция (Differential Binary Phase Shift Key, DBPSK).

При этом кодирование информации происходит за счет сдвига фазы синусоидального сигнала по отношению к предыдущему состоянию сигнала. Двоичная фазовая модуляция предусматривает два возможных значения сдвига фазы - 0 и p. Тогда логический нуль может передаваться синфазным сигналом (сдвиг по фазе равен 0), а единица - сигналом, который сдвинут по фазе на p.

Информационная скорость 1 Мбит/с является обязательной в стандарте IEEE 802.11 (Basic Access Rate), но опционально возможна и скорость в 2 Мбит/с (Enhanced Access Rate). Для передачи данных на такой скорости используется та же технология DSSS с 11-чиповыми кодами Баркера, но для модуляции несущего колебания применяется относительная квадратурная фазовая модуляция (Differential Quadrature Phase Shift Key).

В заключение рассмотрения физического уровня протокола 802.11 отметим, что при информационной скорости 2 Мбит/с скорость следования отдельных чипов последовательности Баркера остается прежней, то есть 11x106 чипов в секунду, а следовательно, не меняется и ширина спектра передаваемого сигнала.

Стандарт IEEE 802.11b

На смену стандарту IEEE 802.11 пришел стандарт IEEE 802.11b, который был принят в июле 1999 года. Данный стандарт является своего рода расширением базового протокола 802.11 и, кроме скоростей 1 и 2 Мбит/с, предусматривает скорости 5,5 и 11 Мбит/с, для работы на которых используются так называемые комплементарные коды (Complementary Code Keying, CCK).

Комплементарные коды, или CCK-последовательности, обладают тем свойством, что сумма их автокорреляционных функций для любого циклического сдвига, отличного от нуля, всегда равна нулю, поэтому они, как и коды Баркера, могут использоваться для распознавания сигнала на фоне шума.

Основное отличие CCK-последовательностей от рассмотренных ранее кодов Баркера заключается в том, что существует не строго заданная последовательность, посредством которой можно кодировать либо логический нуль, либо единицу, а целый набор последовательностей. Это обстоятельство позволяет кодировать в одном передаваемом символе несколько информационных бит и тем самым повышает информационную скорость передачи.

В стандарте IEEE 802.11b речь идет о комплексных комплементарных 8-чиповых последовательностях, определенных на множестве комплексных элементов, принимающих значения {1, –1, +j, –j }.

Комплексное представление сигнала - это удобный математический аппарат для представления модулированного по фазе сигнала. Так, значение последовательности равное 1 соответствует сигналу, синфазному к сигналу генератора, а значение последовательности равное –1 - противофазному сигналу; значение последовательности равное j - сигналу, сдвинутому по фазе на p/2, а значение равное –j , - сигналу, сдвинутому по фазе на –p/2.

Каждый элемент CCK-последовательности представляет собой комплексное число, значение которого определяется по довольно сложному алгоритму. Всего существует 64 набора возможных CCK-последовательностей, причем выбор каждой из них определяется последовательностью входных бит. Для однозначного выбора одной CCK-последовательности требуется знать шесть входных бит. Таким образом, в протоколе IEEE 802.11b при кодировании каждого символа используется одна из 64 возможных восьмиразрядных CKK-последовательностей.

При скорости 5,5 Мбит/с в одном символе одновременно кодируется 4, а при скорости 11 Мбит/с - 8 битов данных. При этом в обоих случаях символьная скорость передачи составляет 1,385x106 символов в секунду (11/8 = 5,5/4 = 1,385), а учитывая, что каждый символ задается 8-чиповой последовательностью, получаем, что в обоих случаях скорость следования отдельных чипов составляет 11x106 чипов в секунду. Соответственно ширина спектра сигнала при скорости как 11, так и 5,5 Мбит/с составляет 22 МГц.

Стандарт IEEE 802.11g

Стандарт IEEE 802.11g, принятый в 2003 году, является логическим развитием стандарта 802.11b и предполагает передачу данных в том же частотном диапазоне, но с более высокими скоростями. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. Максимальная скорость передачи данных в стандарте 802.11g составляет 54 Мбит/с.

При разработке стандарта 802.11g рассматривались две конкурирующие технологии: метод ортогонального частотного разделения OFDM, заимствованный из стандарта 802.11a и предложенный к рассмотрению компанией Intersil, и метод двоичного пакетного сверточного кодирования PBCC, предложенный компанией Texas Instruments. В результате стандарт 802.11g содержит компромиссное решение: в качестве базовых применяются технологии OFDM и CCK, а опционально предусмотрено использование технологии PBCC.

Идея сверточного кодирования (Packet Binary Convolutional Coding, PBCC) заключается в следующем. Входящая последовательность информационных бит преобразуется в сверточном кодере таким образом, чтобы каждому входному биту соответствовало более одного выходного. То есть сверточный кодер добавляет определенную избыточную информацию к исходной последовательности. Если, к примеру, каждому входному биту соответствуют два выходных, то говорят о сверточном кодировании со скоростью r = 1/2. Если же каждым двум входным битам соответствуют три выходных, то будет составлять уже 2/3.

Любой сверточный кодер строится на основе нескольких последовательно связанных запоминающих ячеек и логических элементов XOR. Количество запоминающих ячеек определяет количество возможных состояний кодера. Если, к примеру, в сверточном кодере используется шесть запоминающих ячеек, то в кодере хранится информация о шести предыдущих состояниях сигнала, а с учетом значения входящего бита получим, что в таком кодере применяется семь бит входной последовательности. Такой сверточный кодер называется кодером на семь состояний (K = 7).

Выходные биты, формируемые в сверточном кодере, определяются операциями XOR между значениями входного бита и битами, хранимыми в запоминающих ячейках, то есть значение каждого формируемого выходного бита зависит не только от входящего информационного бита, но и от нескольких предыдущих битов.

В технологии PBCC используются сверточные кодеры на семь состояний (K = 7) со скоростью r = 1/2.

Главным достоинством сверточных кодеров является помехоустойчивость формируемой ими последовательности. Дело в том, что при избыточности кодирования даже в случае возникновения ошибок приема исходная последовательность бит может быть безошибочно восстановлена. Для восстановления исходной последовательности бит на стороне приемника применяется декодер Витерби.

Дибит, формируемый в сверточном кодере, используется в дальнейшем в качестве передаваемого символа, но предварительно он подвергается фазовой модуляции. Причем в зависимости от скорости передачи возможна двоичная, квадратурная или даже восьмипозиционная фазовая модуляция.

В отличие от технологий DSSS (коды Баркера, ССК-последовательности), в технологии сверточного кодирования не применяется технология уширения спектра за счет использования шумоподобных последовательностей, однако уширение спектра до стандартных 22 МГц предусмотрено и в данном случае. Для этого применяют вариации возможных сигнальных созвездий QPSK и BPSK.

Рассмотренный метод PBCC-кодирования опционально используется в протоколе 802.11b на скоростях 5,5 и 11 Мбит/с. Аналогично в протоколе 802.11g для скоростей передачи 5,5 и 11 Мбит/с этот способ тоже применяется опционально. Вообще, вследствие совместимости протоколов 802.11b и 802.11g технологии кодирования и скорости, предусмотренные протоколом 802.11b, поддерживаются и в протоколе 802.11g. В этом плане до скорости 11 Мбит/с протоколы 802.11b и 802.11g совпадают друг с другом, за исключением того, что в протоколе 802.11g предусмотрены такие скорости, которых нет в протоколе 802.11b.

Опционально в протоколе 802.11g технология PBCC может использоваться при скоростях передачи 22 и 33 Мбит/с.

Для скорости 22 Мбит/с по сравнению с уже рассмотренной нами схемой PBCC передача данных имеет две особенности. Прежде всего, применяется 8-позиционная фазовая модуляция (8-PSK), то есть фаза сигнала может принимать восемь различных значений, что позволяет в одном символе кодировать уже три бита. Кроме того, в схему, за исключением сверточного кодера, добавлен пунктурный кодер (Puncture). Смысл такого решения довольно прост: избыточность сверточного кодера, равная 2 (на каждый входной бит приходится два выходных), достаточно высока и при определенных условиях помеховой обстановки является излишней, поэтому можно уменьшить избыточность, чтобы, к примеру, каждым двум входным битам соответствовали три выходных. Для этого можно, конечно, разработать соответствующий сверточный кодер, но лучше добавить в схему специальный пунктурный кодер, который будет просто уничтожать лишние биты.

Допустим, пунктурный кодер удаляет один бит из каждых четырех входных бит. Тогда каждым четырем входящим бит будут соответствовать три выходящих. Скорость такого кодера составляет 4/3. Если же такой кодер используется в паре со сверточным кодером со скоростью 1/2, то общая скорость кодирования составит уже 2/3, то есть каждым двум входным битам будут соответствовать три выходных.

Как уже отмечалось, технология PBCC является опциональной в стандарте IEEE 802.11g, а технология OFDM - обязательной. Для того чтобы понять суть технологии OFDM, рассмотрим более подробно многолучевую интерференцию, возникающую при распространении сигналов в открытой среде.

Эффект многолучевой интерференции сигналов заключается в том, что в результате многократных отражений от естественных преград один и тот же сигнал может попадать в приемник различными путями. Но разные пути распространения отличаются друг от друга по длине, а потому ослабление сигнала будет для них неодинаковым. Следовательно, в точке приема результирующий сигнал представляет собой интерференцию многих сигналов, имеющих различные амплитуды и смещенных друг относительно друга по времени, что эквивалентно сложению сигналов с разными фазами.

Следствием многолучевой интерференции является искажение принимаемого сигнала. Многолучевая интерференция присуща любому типу сигналов, но особенно негативно она сказывается на широкополосных сигналах, поскольку при использовании широкополосного сигнала в результате интерференции определенные частоты складываются синфазно, что приводит к увеличению сигнала, а некоторые, наоборот, противофазно, вызывая ослабление сигнала на данной частоте.

Говоря о многолучевой интерференции, возникающей при передаче сигналов, отмечают два крайних случая. В первом из них максимальная задержка между сигналами не превышает длительности одного символа и интерференция возникает в пределах одного передаваемого символа. Во втором - максимальная задержка между сигналами больше длительности одного символа, поэтому в результате интерференции складываются сигналы, представляющие разные символы, и возникает так называемая межсимвольная интерференция (Inter Symbol Interference, ISI).

Наиболее отрицательно на искажение сигнала влияет именно межсимвольная интерференция. Поскольку символ - это дискретное состояние сигнала, характеризующееся значениями частоты несущей, амплитуды и фазы, для разных символов меняются амплитуда и фаза сигнала, а следовательно, восстановить исходный сигнал крайне сложно.

По этой причине при высоких скоростях передачи применяется метод кодирования данных, называемый ортогональным частотным разделением каналов с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM). Суть его заключается в том, что поток передаваемых данных распределяется по множеству частотных подканалов и передача ведется параллельно на всех таких подканалах. При этом высокая скорость передачи достигается именно за счет одновременной передачи данных по всем каналам, тогда как скорость передачи в отдельном подканале может быть и невысокой.

Благодаря тому что в каждом из частотных подканалов скорость передачи данных можно сделать не слишком высокой, создаются предпосылки для эффективного подавления межсимвольной интерференции.

При частотном разделении каналов необходимо, чтобы отдельный канал был достаточно узким для минимизации искажения сигнала, но в то же время - достаточно широким для обеспечения требуемой скорости передачи. Кроме того, для экономного использования всей полосы канала, разделяемого на подканалы, желательно расположить частотные подканалы как можно ближе друг к другу, но при этом избежать межканальной интерференции, чтобы обеспечить их полную независимость. Частотные каналы, удовлетворяющие вышеперечисленным требованиям, называются ортогональными. Несущие сигналы всех частотных подканалов ортогональны друг другу. Важно, что ортогональность несущих сигналов гарантирует частотную независимость каналов друг от друга, а следовательно, и отсутствие межканальной интерференции.

Рассмотренный способ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (OFDM). Для его реализации в передающих устройствах используется обратное быстрое преобразование Фурье (IFFT), переводящее предварительно мультиплексированный на n -каналов сигнал из временно го представления в частотное.

Одним из ключевых преимуществ метода OFDM является сочетание высокой скорости передачи с эффективным противостоянием многолучевому распространению. Конечно, сама по себе технология OFDM не исключает многолучевого распространения, но создает предпосылки для устранения эффекта межсимвольной интерференции. Дело в том, что неотъемлемой частью технологии OFDM является охранный интервал (Guard Interval, GI) - циклическое повторение окончания символа, пристраиваемое в начале символа.

Охранный интервал создает паузы между отдельными символами, и если его длительность превышает максимальное время задержки сигнала в результате многолучевого распространения, то межсимвольной интерференции не возникает.

При использовании технологии OFDM длительность охранного интервала составляет одну четвертую длительности самого символа. При этом символ имеет длительность 3,2 мкс, а охранный интервал - 0,8 мкс. Таким образом, длительность символа вместе с охранным интервалом составляет 4 мкс.

Говоря о технологии частотного ортогонального разделения каналов OFDM, применяемой на различных скоростях в протоколе 802.11g, мы до сих пор не касались вопроса о методе модуляции несущего сигнала.

В протоколе 802.11g на низких скоростях передачи применяется двоичная и квадратурная фазовые модуляции BPSK и QPSK. При использовании BPSK-модуляции в одном символе кодируется только один информационный бит, а при QPSK-модуляции - два информационных бита. Модуляция BPSK применяется для передачи данных на скоростях 6 и 9 Мбит/с, а модуляция QPSK - на скоростях 12 и 18 Мбит/с.

Для передачи на более высоких скоростях используется квадратурная амплитудная модуляция QAM (Quadrature Amplitude Modulation), при которой информация кодируется за счет изменения фазы и амплитуды сигнала. В протоколе 802.11g применяется модуляция 16-QAM и 64-QAM. Первая модуляция предполагает 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе; вторая - 64 возможных состояния сигнала, что дает возможность закодировать последовательность 6 бит в одном символе. Модуляция 16-QAM используется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM - на скоростях 48 и 54 Мбит/с.

Кроме применения CCK-, OFDM- и PBCC-кодирований, в стандарте IEEE 802.11g опционально предусмотрены также различные варианты гибридного кодирования.

Для того чтобы понять сущность этого термина, вспомним, что любой передаваемый пакет данных содержит заголовок (преамбулу) со служебной информацией и поле данных. Когда речь идет о пакете в формате CCK, имеется в виду, что заголовок и данные кадра передаются в формате CCK. Аналогично при использовании технологии OFDM заголовок кадра и данные передаются посредством OFDM-кодирования. Гибридное кодирование подразумевает, что для заголовка кадра и полей данных могут использоваться различные технологии кодирования. К примеру, при применении технологии CCK-OFDM заголовок кадра кодируется с помощью CCK-кодов, но сами данные кадра передаются с использованием многочастотного OFDM-кодирования. Таким образом, технология CCK-OFDM является своеобразным гибридом CCK и OFDM. Однако это не единственная гибридная технология - при использовании пакетного кодирования PBCC заголовок кадра передается с помощью CCK-кодов, а данные кадра кодируются с применением PBCC.

Стандарт IEEE 802.11а

Рассмотренные выше стандарты IEEE 802.11b и IEEE 802.11g относятся к частотному диапазону 2,4 ГГц (от 2,4 до 2,4835 ГГц), а стандарт IEEE 802.11a, принятый в 1999 году, предполагает использование уже более высокочастотного диапазона (от 5,15 до 5,350 ГГц и от 5,725 до 5,825 ГГц). В США данный диапазон называют диапазоном нелицензионной национальной информационной инфраструктуры (Unlicensed National Information Infrastructure, UNII).

В соответствии с правилами FCC частотный диапазон UNII разбит на три 100-мегагерцевых поддиапазона, различающихся ограничениями по максимальной мощности излучения. Низший диапазон (от 5,15 до 5,25 ГГц) предусматривает мощность всего 50 мВт, средний (от 5,25 до 5,35 ГГц) - 250 мВт, а верхний (от 5,725 до 5,825 ГГц) - 1 Вт. Использование трех частотных поддиапазонов с общей шириной 300 МГц делает стандарт IEEE 802.11а самым широкополосным из семейства стандартов 802.11 и позволяет разбить весь частотный диапазон на 12 каналов, каждый из которых имеет ширину 20 МГц, причем восемь из них лежат в 200-мегагерцевом диапазоне от 5,15 до 5,35 ГГц, а остальные четыре канала - в 100-мегагерцевом диапазоне от 5,725 до 5,825 ГГц (рис. 1). При этом четыре верхних частотных канала, предусматривающие наибольшую мощность передачи, используются преимущественно для передачи сигналов вне помещений.

Рис. 1. Разделение диапазона UNII на 12 частотных поддиапазонов

Стандарт IEEE 802.11a основан на технике частотного ортогонального разделения каналов с мультиплексированием (OFDM). Для разделения каналов применяется обратное преобразование Фурье с окном в 64 частотных подканала. Поскольку ширина каждого из 12 каналов, определяемых в стандарте 802.11а, имеет значение 20 МГц, получается, что каждый ортогональный частотный подканал (поднесущая) имеет ширину 312,5 кГц. Однако из 64 ортогональных подканалов задействуется только 52, причем 48 из них применяются для передачи данных (Data Tones), а остальные - для передачи служебной информации (Pilot Тones).

По технике модуляции протокол 802.11a мало чем отличается от 802.11g. На низких скоростях передачи для модуляции поднесущих частот используется двоичная и квадратурная фазовые модуляции BPSK и QPSK. При применении BPSK-модуляции в одном символе кодируется только один информационный бит. Соответственно при использовании QPSK-модуляции, то есть когда фаза сигнала может принимать четыре различных значения, в одном символе кодируются два информационных бита. Модуляция BPSK используется для передачи данных на скоростях 6 и 9 Мбит/с, а модуляция QPSK - на скоростях 12 и 18 Мбит/с.

Для передачи на более высоких скоростях в стандарте IEEE 802.11а используется квадратурная амплитудная модуляция 16-QAM и 64-QAM. В первом случае имеется 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе, а во втором - уже 64 возможных состояния сигнала, что позволяет закодировать последовательность из 6 битов в одном символе. Модуляция 16-QAM применяется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM - на скоростях 48 и 54 Мбит/с.

Информационная емкость OFDM-символа определяется типом модуляции и числом поднесущих. Поскольку для передачи данных применяются 48 поднесущих, емкость OFDM-символа составляет 48 x Nb, где Nb - двоичный логарифм от числа позиций модуляции, или, проще говоря, количество бит, которые кодируются в одном символе в одном подканале. Соответственно емкость OFDM-символа составляет от 48 до 288 бит.

Последовательность обработки входных данных (битов) в стандарте IEEE 802.11а выглядит следующим образом. Первоначально входной поток данных подвергается стандартной операции скрэмблирования. После этого поток данных поступает на сверточный кодер. Скорость сверточного кодирования (в сочетании с пунктурным кодированием) может составлять 1/2, 2/3 или 3/4.

Поскольку скорость сверточного кодирования может быть разной, то при использовании одного и того же типа модуляции скорость передачи данных оказывается различной.

Рассмотрим, к примеру, модуляцию BPSK, при которой скорость передачи данных составляет 6 или 9 Мбит/с. Длительность одного символа вместе с охранным интервалом равна 4 мкс, а значит, частота следования импульсов составит 250 кГц. Учитывая, что в каждом подканале кодируется по одному биту, а всего таких подканалов 48, получаем, что общая скорость передачи данных составит 250 кГц x 48 каналов = 12 МГц. Если при этом скорость сверточного кодирования равна 1/2 (на каждый информационный бит добавляется один служебный), информационная скорость окажется вдвое меньше полной скорости, то есть 6 Мбит/с. При скорости сверточного кодирования 3/4 на каждые три информационных бита добавляется один служебный, поэтому в данном случае полезная (информационная) скорость составляет 3/4 от полной скорости, то есть 9 Мбит/с.

Аналогичным образом каждому типу модуляции соответствуют две различные скорости передачи (табл. 1).

Таблица 1. Соотношение между скоростями передачи
и типом модуляции в стандарте 802.11a

Скорость передачи, Мбит/с

Тип модуляции

Скорость сверточного кодирования

Количество бит
в одном символе
в одном подканале

Общее количество бит в символе
(48 подканалов)

Количество информационных бит в символе

После сверточного кодирования поток бит подвергается операции перемежения, или интерливинга. Суть ее заключается в изменении порядка следования бит в пределах одного OFDM-символа. Для этого последовательность входных бит разбивается на блоки, длина которых равна числу бит в OFDM-символе (NCBPS). Далее по определенному алгоритму производится двухэтапная перестановка бит в каждом блоке. На первом этапе биты переставляются таким образом, чтобы смежные биты при передаче OFDM-символа передавались на несмежных поднесущих. Алгоритм перестановки бит на этом этапе эквивалентен следующей процедуре. Первоначально блок бит длиной NCBPS построчно (строка за строкой) записывается в матрицу, содержащую 16 строк и NCBPS/16 рядов. Далее биты считываются из этой матрицы, но уже по рядам (или так же, как записывались, но из транспонированной матрицы). В результате такой операции первоначально соседние биты будут передаваться на несмежных поднесущих.

Затем следует этап второй перестановки битов, цель которого заключается в том, чтобы соседние биты не оказались одновременно в младших разрядах групп, определяющих модуляционный символ в сигнальном созвездии. То есть после второго этапа перестановки соседние биты оказываются попеременно в старших и младших разрядах групп. Делается это с целью улучшения помехоустойчивости передаваемого сигнала.

После перемежения последовательность бит разбивается на группы по числу позиций выбранного типа модуляции и формируются OFDM-символы.

Сформированные OFDM-символы подвергаются быстрому преобразованию Фурье, в результате чего формируются выходные синфазный и квадратурный сигналы, которые затем подвергаются стандартной обработке - модуляции.

Стандарт IEEE 802.11n

Разработка стандарта IEEE 802.11n официально началась 11 сентября 2002 года, то есть еще за год до окончательного принятия стандарта IEEE 802.11g. Во второй половине 2003 года была создана целевая группа (Task Group) IEEE 802.11n (802.11 TGn), в задачу которой входила разработка нового стандарта беспроводной связи на скорости свыше 100 Мбит/с. Этой же задачей занималась и другая целевая группа - 802.15.3a. К 2005 году процессы выработки единого решения в каждой из групп зашли в тупик. В группе 802.15.3а наблюдалось противостояние компании Motorola и всех остальных членов группы, а члены группы IEEE 802.11n разбились на два примерно одинаковых лагеря: WWiSE (World Wide Spectrum Efficiency) и TGn Sync. Группу WWiSE возглавляла компания Aigro Networks, а группу TGn Sync - компания Intel. В каждой из групп долгое время ни один из альтернативных вариантов не мог набрать необходимые для его утверждения 75% голосов.

После почти трех лет безуспешного противостояния и попыток выработать компромиссное решение, которое устраивало бы всех, участники группы 802.15.3а практически единогласно проголосовали за ликвидацию проекта 802.15.3а. Члены проекта IEEE 802.11n оказались более гибкими - им удалось договориться и создать объединенное предложение, которое устраивало бы всех. В результате 19 января 2006 года на очередной конференции, проходившей в Коне на Гавайях, была одобрена предварительная (draft) спецификация стандарта IEEE 802.11n. Из 188 членов рабочей группы 184 выступили за принятие стандарта, а четверо воздержались. Основные положения одобренного документа лягут в основу окончательной спецификации нового стандарта.

Стандарт IEEE 802.11n основан на технологии OFDM-MIMO. Очень многие реализованные в нем технические детали позаимствованы из стандарта 802.11a, однако в стандарте IEEE 802.11n предусматривается использование как частотного диапазона, принятого для стандарта IEEE 802.11a, так и частотного диапазона, принятого для стандартов IEEE 802.11b/g. То есть устройства, поддерживающие стандарт IEEE 802.11n, могут работать в частотном диапазоне либо 5, либо 2,4 ГГц, причем конкретная реализация зависит от страны. Для России устройства стандарта IEEE 802.11n будут поддерживать частотный диапазон 2,4 ГГц.

Увеличение скорости передачи в стандарте IEEE 802.11n достигается, во-первых, благодаря удвоению ширины канала с 20 до 40 МГц, а во-вторых, за счет реализации технологии MIMO.

Технология MIMO (Multiple Input Multiple Output) предполагает применение нескольких передающих и принимающих антенн. По аналогии традиционные системы, то есть системы с одной передающей и одной принимающей антенной, называются SISO (Single Input Single Output).

Теоретически MIMO-система с n передающими и n принимающими антеннами способна обеспечить пиковую пропускную способность в n раз бoльшую, чем системы SISO. Это достигается за счет того, что передатчик разбивает поток данных на независимые последовательности бит и пересылает их одновременно, используя массив антенн. Такая техника передачи называется пространственным мультиплексированием. Отметим, что все антенны передают данные независимо друг от друга в одном и том же частотном диапазоне.

Рассмотрим, к примеру, MIMO-систему, состоящую из n передающих и m принимающих антенн (рис. 2).

Рис. 2. Принцип реализации технологии MIMO

Передатчик в такой системе посылает n независимых сигналов, применяя n антенн. На приемной стороне каждая из m антенн получает сигналы, которые являются суперпозицией n сигналов от всех передающих антенн. Таким образом, сигнал R1 , принимаемый первой антенной, можно представить в виде:

Записывая подобные уравнения для каждой приемной антенны, получим следующую систему:

Или, переписав данное выражение в матричном виде:

где [H ] - матрица переноса, описывающая MIMO-канал связи.

Для того чтобы на приемной стороне декодер мог правильно восстановить все сигналы, он должен прежде всего определить коэффициенты h ij , характеризующие каждый из m x n каналов передачи. Для определения коэффициентов h ij в технологии MIMO используется преамбула пакета.

Определив коэффициенты матрицы переноса, можно легко восстановить переданный сигнал:

где [H ]–1 - матрица, обратная матрице переноса [H ].

Важно отметить, что в технологии MIMO применение нескольких передающих и принимающих антенн позволяет повысить пропускную способность канала связи за счет реализации нескольких пространственно разнесенных подканалов, при этом данные передаются в одном и том же частотном диапазоне.

Технология MIMO никак не затрагивает метод кодирования данных и в принципе может использоваться в сочетании с любыми методами физического и логического кодирования данных.

Впервые технология MIMO была описана в стандарте IEEE 802.16. Этот стандарт допускает применение технологии MISO, то есть нескольких передающих антенн и одной принимающей. В стандарте IEEE 802.11n допускается использование до четырех антенн у точки доступа и беспроводного адаптера. Обязательный режим подразумевает поддержку двух антенн у точки доступа и одной антенны и беспроводного адаптера.

В стандарте IEEE 802.11n предусмотрены как стандартные каналы связи шириной 20 МГц, так и каналы с удвоенной шириной. Однако применение 40-мегагерцевых каналов является опциональной возможностью стандарта, поскольку использование таких каналов может противоречить законодательству некоторых стран.

В стандарте 802.11n предусмотрено два режима передачи: стандартный режим передачи (L) и режим с высокой пропускной способностью (High Throughput, HT). В традиционных режимах передачи используются 52 частотных OFDM-подканала (поднесущих частот), из которых 48 задействуется для передачи данных, а остальные - для передачи служебной информации.

В режимах с повышенной пропускной способностью при ширине канала в 20 МГц применяются 56 частотных подканалов, из которых 52 задействуются для передачи данных, а четыре канала являются пилотными. Таким образом, даже при использовании канала шириной 20 МГц увеличение частотных подканалов с 48 до 52 позволяет повысить скорость передачи на 8%.

При применении канала удвоенной ширины, то есть канала шириной 40 МГц, в стандартном режиме передачи вещание фактически ведется на сдвоенном канале. Соответственно количество поднесущих частот увеличивается вдвое (104 подканала, из которых 96 являются информационными). Благодаря этому скорость передачи увеличивается на 100%.

При использовании 40-мегагерцевого канала и режима с высокой пропускной способностью применяются 114 частотных подканалов, из которых 108 подканалов - информационные, а шесть - пилотные. Соответственно это позволяет увеличить скорость передачи уже на 125%.

Таблица 2. Соотношение между скоростями передачи, типом модуляции
и скоростью сверточного кодирования в стандарте 802.11n
(канал шириной 20 МГц, HT-режим (52 частотных подканала))

Тип модуляции

Скорость сверточного кодирования

Количество бит в одном символе в одном подканале

Общее количество бит в OFDM-символе

Количество информационных бит на символ

Скорость передачи данных

Еще два обстоятельства, благодаря которым в стандарте IEEE 802.11n увеличивается скорость передачи, - это сокращение длительности охранного интервала GI в OGDM-символах с 0,8 до 0,4 мкс и повышение скорости сверточного кодирования. Напомним, что в протоколе IEEE 802.11a максимальная скорость сверточного кодирования составляет 3/4, то есть к каждым трем входным битам добавляется еще один. В протоколе IEEE 802.11n максимальная скорость сверточного кодирования равна 5/6, то есть каждые пять входных бит в сверточном кодере превращаются в шесть выходных. Соотношение между скоростями передачи, типом модуляции и скоростью сверточного кодирования для стандартного канала шириной 20 МГц приведены в табл. 2.

Протокол беспроводной связи Wi-Fi (Wireless Fidelity – беспроводная точность) был разработан еще в 1996 году. Изначально он предназначался для построения локальных сетей, но наибольшую популярность приобрел, как эффективный метод соединения с интернетом смартфонов и других портативных устройств.

За 20 лет одноименный альянс разработал несколько поколений соединения, внедряя с каждым годом более скоростные и функциональные его обновления. Они описываются стандартами 802.11, издаваемыми IEEE (Институт инженеров электротехники и электроники). В группу входит несколько версий протокола, отличающихся скоростью передачи данных и поддержкой дополнительных функций.

Самый первый стандарт Wi-Fi не имел буквенного обозначения. Поддерживающие его устройства обмениваются данными на частоте 2,4 ГГц. Скорость передачи информации составляла всего 1 Мбит/с. Также существовали девайсы с поддержкой скорости до 2 Мбит/с. Он активно использовался всего 3 года, после чего был усовершенствован. Каждый последующий стандарт Wi-Fi обозначается буквой после общего номера (802.11a/b/g/n и т.д.).

Одно из первых обновлений стандарта Wi-Fi, вышедшее в 1999 году. Благодаря удвоению частоты (до 5 ГГц) инженерам удалось добиться теоретических скоростей до 54 Мбит/с. Широкого распространения он не получил, так как сам по себе несовместим с другими версиями. Устройства, поддерживающие его, для работы в сетях на 2,4 ГГц должны иметь двойной приемопередатчик. Смартфоны с Wi-Fi 802.11a распространены слабо.

Стандарт Wi-Fi IEEE 802.11b

Второе раннее обновление интерфейса, вышедшее параллельно с версией a. Частота осталась прежней (2,4 ГГц), но скорость увеличили до 5,5 или 11 Мбит/с (в зависимости от устройства). До конца первого десятилетия 2000-х годов это был наиболее распространенный стандарт для беспроводных сетей. Совместимость с более старой версией, а также достаточно большой радиус покрытия, обеспечили ему популярность. Несмотря на вытеснение новыми версиями, 802.11b поддерживается практически всеми современными смартфонами.

Стандарт Wi-Fi IEEE 802.11g

Новое поколение протокола Wi-Fi было представлено в 2003 году. Разработчики оставили частоты передачи данных прежними, благодаря чему стандарт оказался полностью совместимым с предшествующим (старые устройства работали со скоростью до 11 Мбит/с). Скорость передачи информации возросла до 54 Мбит/с, что было достаточно вплоть до недавнего времени. Все современные смартфоны работают с 802.11g.

Стандарт Wi-Fi IEEE 802.11n

В 2009 году вышло масштабное обновление стандарта Wi-Fi. Новая версия интерфейса получила существенное увеличение скорости (до 600 Мбит/с), сохранив совместимость с предшествующими. Для возможности работы с оборудованием 802.11a, а также борьбы с перегруженностью диапазона 2,4 ГГц, была возвращена поддержка частот 5 ГГц (параллельно 2,4 ГГц).

Были расширены возможности конфигурирования сети и увеличено количество поддерживаемых одновременно соединений. Появились возможность связи в многопоточном режиме MIMO (параллельная передача нескольких потоков данных на одной частоте) и объединение двух каналов для связи с одним устройством. Первые смартфоны с поддержкой этого протокола вышли в 2010 году.

Стандарт Wi-Fi IEEE 802.11ac

В 2014 году был утвержден новый стандарт Wi-Fi IEEE 802.11ac. Он стал логичным продолжением 802.11n, предоставляющим десятикратный рост скорости. Благодаря возможности объединения до 8 каналов (по 20 МГц каждый) одновременно – теоретический потолок увеличился до 6,93 Гбит/с. что в 24 раза быстрее, чем 802.11n.

От частоты 2,4 ГГц было решено отказаться, в силу загруженности диапазона и невозможности объединения более 2 каналов. Стандарт Wi-Fi IEEE 802.11ac работает в диапазоне 5 ГГц и обратно совместим с устройствами 802.11n (с частотой 2,4 ГГц), но работа с более ранними версиями не гарантируется. Сегодня еще не все смартфоны поддерживают его (к примеру, поддержки нет у многих бюджетников на MediaTek).

Другие стандарты

Существуют версии IEEE 802.11, маркированные другими буквами. Но они или вносят небольшие поправки и дополнения к перечисленным выше стандартам, или добавляют специфические функции (вроде возможности взаимодействия с другими радиосетями или безопасность). Выделить стоит 802.11y, использующий нестандартную частоту 3,6 ГГц, а также 802.11ad, рассчитанный на диапазон 60 ГГц. Первый создан для обеспечения дальности связи до 5 км, за счет использования чистого диапазона. Второй (он также известен как WiGig) – предназначен для обеспечения максимальной (до 7 Гбит/с) скорости связи на сверхмалых расстояниях (в пределах комнаты).

Какой стандарт Wi-Fi для смартфона лучше

Все современные смартфоны оборудованы модулем Wi-Fi, рассчитанным на работу с несколькими версиями 802.11. Как правило, поддерживаются все взаимно совместимые стандарты: b, g и n. Однако работа с последним нередко может быть реализована только на частоте 2,4 ГГц. Устройства, которые способны работать в сетях 802.11n 5 ГГц, также отличаются поддержкой 802.11a, как обратно совместимого.

Рост частоты способствует увеличению скорости обмена данными. Но, вместе с тем, уменьшается длина волны, ей сложнее проходить сквозь препятствия. Из-за этого теоретическая дальность связи 2,4 ГГц будет выше, чем у 5 ГГц. Однако на практике ситуация обстоит немного иначе.

Частота 2,4 ГГц оказалась свободной, поэтому бытовая электроника использует именно ее. Помимо Wi-Fi, в этом диапазоне работают Bluetooth-устройства, приемопередатчики беспроводных клавиатур и мышек, в нем же излучают магнетроны СВЧ-печей. Поэтому в местах, где функционирует несколько сетей Wi-Fi, количество помех нивелирует преимущество в дальности. Сигнал будет ловиться и за сотню метров, но скорость окажется минимальной, а потери пакетов данных – большими.

Диапазон 5 ГГц более широк (от 5170 до 5905 МГц), меньше загружен. Поэтому волны хуже преодолевают препятствия (стена, мебель, тело человека), зато в условиях прямой видимости обеспечивают более устойчивую связь. Неспособность эффективно преодолевать стены оборачивается преимуществом: вы не сможете поймать соседский Wi-Fi, зато и вашему роутеру или смартфону он мешать не будет.

Однако, следует помнить, что для достижения максимальной скорости – необходим и роутер, работающий с таким же стандартом. В остальных случаях получить больше 150 Мбит/с все равно не выйдет.

Многое зависит от роутера и его типа антенны. Антенны адаптивного типа разработаны так, что они определяют местонахождение смартфона и подают на него направленный сигнал, достающий дальше, чем у других типов антенн.

Также вам понравятся:



Возможности настройки смартфона через инженерное меню

Всем привет! Будем сегодня снова говорить о маршрутизаторах, беспроводной сети, технологиях…

Решил подготовить статью, в которой рассказать о том, что же это за такие непонятные буквы b/g/n, которые можно встретить при настройке Wi-Fi роутера, или при покупке устройства (характеристики Wi-Fi , например 802.11 b/g) . И в чем отличие между этими стандартами.

Уже несколько раз замечал, что при самых разных проблемах с подключением телефонов, или планшетов к Wi-Fi – помогает смена режима работы Wi-Fi.

Если Вы хотите посмотреть, какие режимы поддерживает Ваше устройство, то посмотрите в характеристиках к нему. Обычно поддерживаемые режимы указаны рядом с отметкой “Wi-Fi 802.11”.

На упаковке (или в интернете) , так же можно посмотреть в каких режимах может работать Ваш маршрутизатор.

Вот для примера поддерживаемые стандарты которые указаны на коробке адаптера :

Как сменить режим работы b/g/n в настройках Wi-Fi роутера?

Я покажу как это сделать на примере двух роутеров, от ASUS и TP-Link . Но если у Вас другой маршрутизатор, то смену настроек режима беспроводной сети (Mode) ищите на вкладке настройки Wi-Fi, там где задаете имя для сети и т. д.

На роутере TP-Link

Заходим в настройки роутера. Как в них зайти? Я уже устал писать об этом практически в каждой статье:)..

После того, как попали в настройки, слева перейдите на вкладку Wireless Wireless Settings .

И напротив пункта Mode Вы можете выбрать стандарт работы беспроводной сети. Там есть много вариантов. Я советую устанавливать 11bgn mixed . Этот пункт позволяет подключать устройства, которые работают хотя бы в одном из трех режимов.

Но если у Вас все же возникают проблемы с подключением определенных устройств, то попробуйте режим 11bg mixed , или 11g only . А для достижения хорошей скорости передачи данных можете установить 11n only . Только смотрите, что бы все устройства поддерживали стандарт n .

На примере роутера ASUS

Здесь все так же. Заходим в настройки и переходим на вкладку “Беспроводная сеть” .

Напротив пункта “Режим беспроводной сети” можно выбрать один из стандартов. Или же установить Mixed , или Auto (что я и советую сделать) . Подробнее по стандартам смотрите чуть выше. Кстати, в ASUS справа выводиться справка, в которой можно прочитать полезную и интересную информацию по этим настройкам.

Для сохранения нажмите кнопку “Применить” .

На этом все, друзья. Ваши вопросы, советы и пожелания жду в комментариях. Всем пока!

Существует несколько разновидностей WLAN-сетей, которые различаются схемой организации сигнала, скоростями передачи данных, радиусом охвата сети, а также характеристиками радиопередатчиков и приемных устройств. Наибольшее распространение получили беспроводные сети стандарта IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, IEEE 802.11ac и другие.

Первыми в 1999 г. были утверждены спецификации 802.11a и 802.11b, тем не менее наибольшее распространение получили устройства, выполненные по стандарту 802.11b.

Стандарт Wi-Fi 802.11b

Стандарт 802.11b основан на методе широкополосной модуляции с прямым расширением спектра (Direct Sequence Spread Spectrum, DSSS). Весь рабочий диапазон делится на 14 каналов, разнесенных на 25 МГц для исключения взаимных помех. Данные передаются по одному из этих каналов без переключения на другие. Возможно одновременное использование всего 3 каналов. Скорость передачи данных может автоматически меняться в зависимости от уровня помех и расстояния между передатчиком и приемником.

Стандарт IEEE 802.11b реализует максимальную теоретическую скорость передачи 11 Мбит/с, что сравнимо с кабельной сетью 10 BaseT Ethernet. Следует учитывать, что такая скорость возможна при передаче данных одним WLAN-устройством. Если в среде одновременно функционирует большее число абонентских станций, то полоса пропускания распределяется между всеми и скорость передачи данных на одного пользователя падает.

Стандарт Wi-Fi 802.11a

Стандарт 802.11a был принят в 1999 году, тем не менее нашел свое применение только с 2001 года. Данный стандарт используется, в основном, в США и Японии. В России и в Европе он не получил широкого распространения.

В стандарте 802.11a применяется схема модуляции сигнала - мультиплексирование с разделением по ортогональным частотам (Orthogonal Frequency Division Multiplexing, OFDM). Основной поток данных разделяется на несколько параллельных субпотоков с относительно низкой скоростью передачи, и затем для их модуляции применяется соответствующее число несущих. Стандартом определены три обязательные скорости передачи данных (6, 12 и 24 Мбит/с) и пять дополнительных (9, 18, 24, 48 и 54 Мбит/с). Также имеется возможность одновременного использования двух каналов, что повышает скорость передачи данных в 2 раза.

Стандарт Wi-Fi 802.11g

Стандарт 802.11g окончательно был утверждён в июне 2003г. Он является дальнейшим усовершенствованием спецификации IEEE 802.11b и реализует передачу данных в том же частотном диапазоне. Главным преимуществом этого стандарта является повышенная пропускная способность - скорость передачи данных в радиоканале достигает 54 Мбит/с по сравнению с 11 Мбит/с у 802.11b. Как и IEEE 802.11b, новая спецификация функционирует в диапазоне 2,4 ГГц, однако для повышения скорости используется та же схема модуляции сигнала, что и в 802.11a - ортогональное частотное мультиплексирование (OFDM).

Стандарт 802.11g совместим с 802.11b. Так адаптеры 802.11b могут работать в сетях 802.11g (но при этом не быстрее 11 Мбит/с), а адаптеры 802.11g могут снижать скорость передачи данных до 11 Мбит/с для работы в старых сетях 802.11b.

Стандарт Wi-Fi 802.11n

Стандарт 802.11 n был ратифицирован 11 сентября 2009. Он увеличивает скорость передачи данных практически в 4 раза по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Максимальная теоретическая скорость передачи данных составляет 600 Мбит/с, применяя передачу данных сразу по четырём антеннам. По одной антенне – до 150 Мбит/с.

Устройства 802.11n функционируют в частотных диапазонах 2,4 – 2,5 или 5,0 ГГц.

В основе стандарта IEEE 802.11n лежит технология OFDM-MIMO. Большинство функционала позаимствовано из стандарта 802.11a, тем не менее в стандарте IEEE 802.11n имеется возможность применения как частотного диапазона, принятого для стандарта IEEE 802.11a, так и частотного диапазона, принятого для стандартов IEEE 802.11b/g. Таким образом, устройства, поддерживающие стандарт IEEE 802.11n, могут функционировать в частотном диапазоне либо 5, либо 2,4 ГГц, причем конкретная реализация зависит от страны. Для России устройства стандарта IEEE 802.11n будут поддерживать частотный диапазон 2,4 ГГц.

Увеличение скорости передачи в стандарте IEEE 802.11n достигается за счет: удвоения ширины канала с 20 до 40 МГц, а также вследствие реализации технологии MIMO.

Стандарт Wi-Fi 802.11ac

Стандарт 802.11ас представляет собой дальнейшее развитие технологий, введенных в стандарт 802.11n. В спецификациях устройства стандарта 802.11ас отнесены к классу VHT (Very High Throughput) – с очень высокой пропускной способностью. Сети стандарта 802.11ас работают исключительно в диапазоне 5 ГГц. Полоса радиоканала может составлять 20, 40, 80 и 160 МГц. Возможно также объединение двух радиоканалов 80 + 80 МГц.

Сравнение 802.11n и 802.11ac

802.11 n

802.11ас

Полоса пропускания

20 и 40 МГц

Добавлена ширина канала 80 и 160 МГц

Диапазоны 2,4 ГГц и 5 ГГц

Только 5 ГГц

Поддерживает модуляции
2-ФМ, 4-ФМ, 16-КАМ и 64-КАМ

К модуляциям 2-ФМ, 4-ФМ, 16-КАМ и 64-КАМ добавлена 256-КАМ

Однопользовательская передача MIMO

Многопользовательская передача MIMO

Агрегация МАС-фреймов: A-MSDU, A-MPDU

Расширенные возможности агрегации МАС-фреймов

Источники:

1. А.Н. Степутин, А.Д. Николаев. Мобильная связь на пути к 6G . В 2 Т. – 2-е изд. - Москва-Вологда: Инфра-Инженерия, 2018. – 804с. : ил.

2. А.Е. Рыжков, В. А. Лаврухин Гетерогенные сети радиодоступа: учебное пособие. - СПб. : СПбГУТ, 2017. – 92 с.

Стандарт беспроводных локальных сетей 802.11ac был представлен еще зимой 2011 года, когда специалисты из международной некоммерческой ассоциации IEEE утвердили первую тестовую версию нового высокоскоростного и модернизированного Wi-Fi. Ко всеобщему удивлению, уже в середине ноября производитель Quantenna продемонстрировал дебютный, базовый чипсет, который хорошо работает в одном тандеме с роутерами и другими сетевыми устройствами. В скором времени в специализированных магазинах появились ноутбуки, смартфоны и другие девайсы совместимые с этим стандартом.

Следует отметить и одно из важных мероприятий, которое ускорило развитие скоростного беспроводного Wi-Fi. Ведь именно на выставке CES были анонсированы новые контроллеры американской корпорацией Broadcom, которые захотели внедрить в своем производстве такие крупные IT-компании, как Lenovo, ZTE, Huawei…

Предлагаю рассмотреть какие преимущества имеет стандарт 802.11ac и в чем он отличается от предыдущего собрата 802.11n?

  1. Наиболее важное отличие заключается в том, что новый Wi-Fi имеет скорость в три раза больше, что положительно отображается на воспроизведении потокового мультимедийного контента.

    Таким образом, передача и воспроизведение видео высокой четкости (HD, FullHD) по беспроводному Wi-Fi каналу при определенных условиях будет без перерывов и до загрузок, если ваше устройство не ограничено аппаратным обеспечением (касается ). Мобильные игры и прочие приложения тем более будут «проходить» по сети на должном уровне.
  2. Еще одно полезное свойство гигабайтного Wi-Fi — это расширенный диапазон и стабилизированный сигнал, покрывающий более широкую площадь, что дает возможность при помощи одного маршрутизатора покрыть беспроводным сигналом квартиру внушительных размеров. Это возможно благодаря разработанной технологии направленного формирования сигнала (beamforming).

    Стандарт n тоже поддерживал данную технологию, но на уровне опций и к тому же сигнал некорректно формировался. Технология бимформинг определяет месторасположения клиент-устройств (ноутбук, планшет, ) и направляет сигнал прямо на них.

    Такой подход помог увеличить качество беспроводного сигнала Wi-Fi.
  3. Не для кого не секрет, что электротехника, использующая Wi-Fi стандарт n — работает диапазонной частоте 2.4 Гигагерц. На этой же частоте работают не только планшеты и смартфоны, но и микроволновые печки и прочая бытовая техника. Такое пересечение на частоте приводило , что заставляло искать . Стандарт 802.11ac, представленный Институтом, не имеет проблем с помехами и умеет работать на скорости в 1,3 Гбит/с на эффективной частоте в 5 ГГц.
  4. Кроме этого, когда условия не позволяют задействовать широкие каналы, стандарт 802.11ас имеет преимущества над старшим «братом» 802.11n. В чем же оно заключается? Дело в том, что новая модуляция 256-QAM, например, при 40 МГц с двумя потоками, обеспечит 400 Mbps, а ранее разработанный 802.11n давал только 300 Mbps. Кроме этого, на стандарте 802.11n девайсы не способны динамически поменять ширину канала, если того потребуют определенные обстоятельства. А вот в 802.11ac заложена такая возможность, которая проверена специалистами и временем.

    К примеру, при благоприятных условиях, клиент и сетевое устройство могут начать с канала 80 МГц, а при изменении условий в худшую сторону, перейти на на 40 или 20 МГц. Переход на более узкие каналы, осуществляется и при условии, что уровень сигнала не дает возможности работать на широком канале. С технической точки зрения, чем уже канал и чем меньше потоки в пространстве, тем меньше возникают требования к уровню сигнала.

К примеру, спецификация Wi -Fi 802.11ас с шириной канала 80 МГц требует, как минимум — 76 dBm, а каналу шириной 20 МГц уже — 82 dBm. Таким образом, планшеты, компьютеры, Smart TV и другие устройства у края зоны покрытия автоматически переходят на более узкие каналы. Международная ассоциация совместно с Wi-Fi Alliance создала специальную специфику, и эксперты в области IT уверяют, что с технологией совместимы более миллиарда устройств.