Закон ома для замкнутой цепи и ее участка. Закон Ома для замкнутой цепи: описание и примеры задач

часто находит применение в работе с электричеством. Благодаря закономерности, найденной немецким физиком Георгом Омом, сегодня мы можем рассчитать величину тока, протекающего в проводе или необходимую толщину провода для подключения к сети.

История открытия

Будущий ученый с малых лет интересовался . Он провел множество испытаний, связанных с . Ввиду несовершенства измерительных приборов того времени, первые результаты исследований были ошибочны и препятствовали дальнейшему развитию вопроса. Георг опубликовал первую научную работу, в которой описывал возможную связь между напряжением и силой тока. Последующие его работы подтвердили предположения, и Ом сформулировал свой знаменитый закон. Все труды были внесены в доклад 1826 года, но научное сообщество не заметило труды молодого физика.

Через пять лет, когда известный французский учёный Пулье пришел к такому же выводу, Георга Ома наградили медалью Копли, за внесение большого вклада в развитии физика как науки.

Сегодня закон Ома используется по всему миру, признанный истинным законом природы. .

Детальное описание

Закон Георга показывает значение электричества в определенной сети, имеющее зависимость от сопротивления к нагрузке и внутренним элементам источника питания. Рассмотрим это детально.

Условное устройство, использующее электроэнергию (например, звуковой динамик) при подключении к источнику питания образует замкнутую цепь (рисунок 1). Подсоединим динамик к аккумулятору. Следующий через динамик ток тоже следует через источник питания. Поток заряженных частиц встретит сопротивление провода и внутренней электроники устройства, а также сопротивление аккумулятора (электролит внутри банки оказывает определенное воздействие на электрический ток). Исходя из этого, значение сопротивления закрытой сети складывается из сопротивления:

  • Источника питания;
  • Электрического устройства.

Подключение условного электрического прибора (динамика) к источнику питания (автомобильному аккумулятору)

Первый параметр называют внутренним, второй – внешним сопротивлением. Противодействие источника электричества маркируется символом r.

Представим, что по сети источник питания/электрическое устройство проходит определённый ток T. Для сохранения стабильного значения электричества внешней сети, в соответствии с законом, на её окончаниях должна наблюдаться потенциальная разность, которая равна R*T. Ток такой же величины проходит и внутри цепи. Вследствие этого – сохранение постоянного значения электричества внутри сети требует потенциальной разности на окончаниях сопротивления r. Она, согласно закону, должна равняться T*r. При сохранении стабильного тока в сети, значение электродвижущей силы равно:

E=T*r+T*R

Из формулы следует, что ЭДС равна сумме падения напряжений во внутренней и внешней сети. Если вынести значение T за скобки, получим:

Е= T(r+R)

T=E/(r+R)

Примеры задач на применение закона для соединенной сети

1) К источнику ЭДС 15 В и сопротивлением 2 Ом подсоединен реостат с сопротивлением 5 Ом. Задача – вычислить силу тока и напряжение на зажимах.

Вычисление

  • Представим закон Ома для соединенной сети: T=E/(r+R).
  • Снижение напряжения вычислим по формуле: U= E-Tr=ER/(R+r).
  • Подставим имеющиеся значения в формулу: T= (15 В)/((5+2) Ом) = 2.1 А, U=(15 В* 5 Ом)/(5+1) Ом = 12.5 В

Ответ: 2.1 А, 12.5 В.

2) При подсоединении к гальваническим элементам резистора с сопротивлением 30 Ом, сила тока в сети приняла значение в 1.5 А, а при подсоединении такого же элемента с сопротивлением 15 Ом сила тока стала 2.5 А. Задача – узнать значение ЭДС и внутреннее сопротивление цепи из гальванических элементов.

Вычисление

  • Запишем закон Георга Ома для соединённой сети: T=E/(r+R).
  • Из него выведем формулы для внутреннего и внешнего сопротивления: E=T_1 R_1+T_1 r, E= T_2 R_2 + T 2r.
  • Приравняем части формулы и вычислим внутреннее сопротивление: r=(T_1 R_1-T_2 R_2)/(T_2-T_1).
  • Полученные значения подставим в закон: E=(T_1 T_2 (R_2-R_1))/(T_2-T_1).
  • Проведем вычисления: r=(1.5 А∙30 Ом-2.5А∙15 Ом)/(2,5-1,5)А=7.5 Ом, E=(1.5 А∙2.5А(30-15)Ом)/((2.5-1.5)А)=56 В.

Ответ: 7.5 Ом, 56 В.

Сфера применения закона Ома для замкнутой цепи

Закон Ома – универсальный инструмент электрика. Он позволяет правильно рассчитать силу тока и напряжение в сети. В основе принципа работы некоторых устройств лежит закон Ома. В частности, предохранителей .

Короткое замыкание – случайное замыкание двух участков сети, не предусмотренное конструкцией оборудования и приводящее к неисправностям. Для предотвращения таких явлений используют специальные устройства, отключающие питание сети.

Если произойдет случайное замыкание цепи с большой перегрузкой, устройство автоматически прекратит подачу тока.

Закон Ома в данном случае находит место на участке цепи постоянного тока. В полной схеме процессов может быть гораздо больше. Многие действия при построении электрической сети или ее ремонте следует проводить с учетом закона Георга Ома.

Для полного изучения соотношения параметров тока в проводниках представлены формулы:

Более сложное выражение закона для практического применения:

Сопротивление представлено отношением напряжения к силе тока в цепи. Если напряжение увеличить в n раз, значение тока также увеличится в n раз.

Не менее известны в электротехнике труды Густава Киргофа. Его правила находят применения в расчетах разветвленных сетей. В основе этих правил лежит .

Труды ученого нашли применение при изобретении многих повседневных вещей, таких как лампы накаливания и электрические плиты. Современные достижения в электронике многим обязаны открытиям 1825 года.

Замкнутая цепь содержит: источник тока, сопротивления (потреби тока), приборы для контроля характеристик тока, провода, ключ. Приме может служить цепь, приведенная на рис.5. По отношению к источнику можно выделит внешнюю цепь, содержащую элементы, находящиеся данного источника, если проследить за током от одной его клеммы другой, и внутреннюю, к которой относят проводящую среду внутри источника обозначим сопротивление внешней цепи через R , внутреннее сопротивление источника r . Тогда ток в цепи определяется по закону для замкнутой цепи, который гласит, что ток в замкнутой цепи прямо пропорционален величине ЭДС и обратно пропорционален сумме внутреннего и внешнего сопротивления цепи, т.е.

Из этого закона вытекают следующие частные случаи:

Если R стремится к нулю (т.е. R << r ), то ток I стремится к максимально

возможному значению I к.з = , называемому током короткого

замыкания. Этот ток опасен для источников, поскольку вызывает перегрев источника и необратимые изменения проводящей среды внутри него.

Если R стремится к бесконечно большой величине (т.е. при условии, что R >> r ), ток I уменьшается, и падение напряжения внутри источника Ir становится намного меньше IR , следовательно IR . Значит, величину ЭДС источника можно практически измерить с помощью вольтметра, присоединенного к клеммам источника при условии, что сопротивление вольтметра R V >> r при разомкнутой внешней цепи.

Распределение энергии при работе источника постоянного тока

Пусть источник постоянного тока имеет ЭДС и внутреннее

сопротивление r и замкнут на сопротивление внешней нагрузки R .

Проанализируем несколько величин, характеризующих распределение энергии при работе источника постоянного тока.

а) Затраченная источником мощность Р.

Работа, совершаемая сторонними силами в замкнутой цепи по

перемещению заряда dq , равна:

dA = dq (9)

Исходя из определения, мощность, развиваемая сторонними силами в

источнике, равна:

(10)

Эта мощность расходуется источником во внешней и внутренней по отношению к источнику частях цепи. Используя закон Ома для замкнутой цепи, можно затраченную мощность представить в виде:

Если сопротивление нагрузки R уменьшается, стремясь к нулю, то Р зат P max = Если R увеличивается, стремясь в бесконечность, то Р зат . График зависимости затраченной сторонними силами мощности Р зат от величины внешнего сопротивления R показан на рисунке 5.

б) Полезная мощность Р под : _

Полезной по отношению к источнику мощностью Р под считается мощность, расходуемая источником во внешней цепи, т.е. на внешней нагрузке. Она равна:

Пользуясь законом Ома для замкнутой цепи, или заменив в последнем выражении I на /(R + r ), можно представить в виде

(13)

Если числитель и знаменатель этого выражения разделить на R , то получится выражение

(13a)

наглядно демонстрирующее то, что Р пол стремится к нулю как при уменьшении R до нуля, так и при его бесконечном увеличении, т.к. в обоих случаях знаменатель этого выражения стремится к бесконечности. Это означает, что при некотором оптимальном значении R полезная мощность достигает максимального значения

Определить оптимальное значение R , а также и значение , можно, приравняв нулю первую производную функции Р поя = f (R ) пo R :

(14)

Как видно, полученное равенство соблюдается при условии

В данной статье расскажем про закон Ома, формулы для полной цепи (замкнутой), участка цепи, неоднородного участка цепи, в дифференциальной и интегральной форме, переменного тока, а также для магнитной цепи. Вы узнаете какие материалы соответствуют и не соответствуют закону Ома, а также где он встречается.
постоянный ток , протекающий через проводник, прямо пропорционален напряжению , приложенному к его концам и обратно пропорционален сопротивлению .

Закон Ома был сформулирован немецким физиком и математиком Георгом Омом в 1825-26 годах на основе опыта. Это экспериментальный закон, а не универсальный — он применим к некоторым материалам и условиям.

Закон Ома является частным случаем более позднего и более общего — второго закона Кирхгофа

Ниже будет представлено видео, в котором объясняется закон Ома на пальцах.

Формула закона Ома для участка цепи

Интенсивность постоянного тока, протекающего через проводник, пропорциональна напряжению, приложенному к его концам. В интернете часто называют данную формулу первым законом Ома:

U — напряжение

I — сила (интенсивность) тока

R — Сопротивление

Электрическое сопротивление:

Коэффициент пропорциональности R называется электрическим сопротивлением или сопротивлением.

Отношение напряжения к току для данного проводника является постоянным:

Единица электрического сопротивления составляет 1 Ом (1 Ω):

Резистор имеет сопротивление 1, если приложенное напряжение 1 вольт и сила тока составляет 1 ампер.

Зависимость электрического сопротивления от размера направляющей:

Сопротивление проводящей секции с постоянным поперечным сечением R прямо пропорционально длине этого сегмента li, обратно пропорциональному площади поперечного сечения S:

R — электрическое сопротивление

ρ — удельное сопротивление

I — длина направляющей

S — площадь поперечного сечения

Эта зависимость была подтверждена экспериментально британским физиком Хамфри Ди в 1822 году до разработки закона Ома.

Закон Ома для замкнутой (полной) цепи

— это значение силы (интенсивности) тока в настоящей цепи, который зависит от сопротивления нагрузки и от источника тока (E), также его называют вторым законом Ома.

Электрическая лампочка является потребителем источника тока, подключив их вместе, они создают полную электро-цепь. На картинке выше, вы можете увидеть полную электрическую цепь, состоящую из аккумулятора и лампы накаливания.

Электричество, проходит через лампу накаливания и через сам аккумулятор. Следовательно, ток проходя через лампу, в дальнейшем пройдет и через аккумулятор, то есть сопротивление лампочки складывается со сопротивлением аккумулятора.

Сопротивление нагрузки (лампочка), называют внешним сопротивлением , а сопротивление источника тока (аккумулятора) - внутренним сопротивление . Сопротивление аккумулятора обозначается латинской буквой r.

Когда электричество течет вокруг цепи, внутреннее сопротивление самой ячейки сопротивляется потоку тока, и поэтому тепловая энергия теряется в самой ячейке.

  • E = электродвижущая сила в вольтах, V
  • I = ток в амперах, A
  • R = сопротивление нагрузки в цепи в Омах, Ω
  • r = внутреннее сопротивление ячейки в Омах, Ω

Мы можем изменить это уравнение;

В этом уравнении появляется (V ), что является конечной разностью потенциалов , измеренной в вольтах (V). Это разность потенциалов на клеммах ячейки при протекании тока в цепи, она всегда меньше э.д.с. ячейки.

Закон Ома для неоднородного участка цепи

Если на участке цепи действуют только потенциальные силы (Рисунок 1а ), то закон Ома записывается в известном виде . Если же в кругу проявляется еще и действие сторонних сил (Рисунок 2б ), то закон Ома примет вид , откуда . Это и есть закон Ома для любого участка цепи .

Закон Ома можно распространить и на весь круг. Соединив точки 2 и 1 (Рисунок 3в ), преобразуем разность потенциалов в ноль, и учитывая сопротивление источника тока, закон Ома примет вид . Это и есть выражение закона Ома для полной цепи .

Последнее выражение можно представить в различных формах. Как известно, напряжение на внешнем участке зависит от нагрузки, то есть
или , или .

В этих выражениях Ir — это падение напряжения внутри источника тока, а также видно, что напряжение U меньше ε на величину Ir . Причем, чем больше внешнее сопротивление по сравнению с внутренним, тем больше U приближается к ε.

Рассмотрим два особых случая, в отношении внешнего сопротивления цепи.

1) R = 0 — такое явление называют коротким замыканием. Тогда, из закона Ома имеем — , то есть ток в цепи возрастает до максимума, а внешний спад напряжения U 0. При этом в источнике выделяется большая мощность, что может привести к его неисправности.

2) R = ∞ , то есть электрическая цепь разорвана, тогда , а . Итак, в этом случае, ЭДС численно равна напряжению на клеммах разомкнутого источника тока.

Закон Ома в дифференциальной форме

Закон Ома можно представить в таком виде, чтобы он не был связан с размерами проводника. Выделим участок проводника Δ l , на концах которой приложено потенциалы φ 1 и φ 2 . Когда средняя площадь сечения проводника Δ S , а плотность тока j , то сила тока

Если Δ l → 0, то взяв предел отношения, . Итак, окончательно получим , или в векторной форме — это выражение закона Ома в дифференциальной форме . Этот закон выражает силу тока в произвольной точке проводника в зависимости от его свойств и электрического состояния.

Закон ома для переменного тока

Это уравнение представляет собой запись закона Ома для цепей переменного тока относительно их амплитудных значений. Понятно, что оно будет справедливым и для эффективных значений силы и тока: .

Для цепей переменного тока возможен случай, когда , а это значит, что U L = U C . Поскольку эти напряжения находятся в противофазе, то они компенсируют друг друга. Такие условия называют резонансом напряжений . Резонанс можно достичь или при ω = const , изменяя С и L , или же при постоянных С и L подбирают ω, которая называется резонансным . Как видно — .

Особенности резонанса напряжений следующие:

Окончательно из (2) — (4) имеем выражение для закона Ома в интегральной форме

который он установил экспериментально.

Интерпретация закона Ома

Интенсивность тока, являющаяся действием приложенного напряжения, ведет себя пропорционально его напряжению. Например: если приложенное напряжение увеличивается в два раза, оно также удваивает силу тока (интенсивность тока).

Помните, что закон Ома удовлетворяется только частью материалов — в основном металлами и керамическими материалами.

Когда закон Ома встречается и какие материалы соответствуют и не соответствуют закону Ома

Закон Ома является экспериментальным законом, выполненным для некоторых материалов (например, металлов) для фиксированных условий тока, в частности температуры проводника.

Материалы, относящиеся к закону Ома, называются омическими направляющими или линейными проводниками. Примерами проводников, которые соответствуют закону Ома, являются металлы (например, медь, золото, железо), некоторые керамические изделия и электролиты.

Материалы, не относящиеся к закону Ома, в которых сопротивление является функцией интенсивности протекающего через них тока, называются нелинейными проводниками. Примерами руководств, не относящихся к закону Ома, являются полупроводники и газы.

Закон Ома не выполняется, когда изменяются параметры проводника, особенно температура.

Полную замкнутую цепь (рис.1) можно рассматривать как последовательное соединение сопротивления внешней цепи (R) и внутреннего сопротивления источника тока (r). То есть:

Если заменить источник тока таким, что его внутренне сопротивление равно такому же сопротивлению как и у предыдущего, то ток в цепи изменится. То есть ток в цепи зависит и от внутреннего сопротивления источника и от его ЭДС. Количественно все эти величины: ЭДС ($\mathcal E$) источника, его внутренне сопротивление, силу тока в цепи (I), электросопротивление цепи (R) связывает закон Ома.

Связь локального закона Ома с интегральным законом для замкнутой цепи

Допустим, что электрические токи текут в тонких проводах. В этом случае направления токов совпадают с направлением оси провода. Для тонких проводов можно считать, что плотность тока $\overrightarrow{j}=const$ в любой точке поперечного сечения провода. В нашем случае можно записать, что сила тока равна:

где $S$ -- площадь поперечного сечения проводника. Пусть мы имеем дело с постоянным током (I=const) вдоль всего проводника. Допустим, что в цепи присутствует источник ЭДС ($\mathcal E$). В данном случае локальная формулировка закона Ома будет иметь вид:

где $\overrightarrow{E}$ напряженность поля кулоновских сил, $\overrightarrow{E_{stor}}$ -- напряженность поля сторонних сил, $\sigma $ -- удельная проводимость, $\overrightarrow{e}$- единичный вектор, направленный по току. Для тонкого провода можно записать выражение (3), как:

Умножим выражение (4) на элемент длины проводника (dl) и найдем интеграл по участку проводника от точки 1 до точки 2. Так как силу тока мы признали постоянной, то имеем:

Электростатическое поле потенциально, следовательно:

Второй интеграл в выражении (5) не равен нулю только в пределах источника ЭДС. Он не зависит от положения точек 1 и 2. Они должны находиться только вне источника.

Считают, что ЭДС источника больше нуля, если путь 1-2 пересекает источник от отрицательного полюса к положительному.

где $R"$ -- электросопротивление, $\rho $ -- удельное сопротивление. Таким образом, из выражения (5) получаем:

Мы получили закон Ома в интегральной форме. В том случае, если цепь замкнута, то ${\varphi }_1={\varphi }_2$, следовательно:

где $R"$ -- электросопротивление всей цепи, электросопротивление нагрузки и внутреннее сопротивление источника тока. То есть закон Ома для замкнутой цепи запишем как:

где $r$ -- электросопротивление источника тока.

Довольно часто приходится решать задачи, в которых напряжение на концах участка цепи не известно, но заданы сопротивления составных частей цепи и ЭДС источника, который питает цепь. Тогда используют закон Ома в виде (11) для расчета силы тока, которая течет в цепи.

Пример 1

Задание: Источник тока имеет внутреннее электросопротивление равное r . Найдите падение потенциала внутри источника ($U_r$) внутри элемента, если ток в цепи равен I. Как вычислить внешнее электросопротивление цепи при заданных условиях?

В качестве основы для решения задачи используем закон Ома для замкнутой цепи:

Из формулы (1.1) легко получить формулу для расчета внешнего сопротивления:

Для того чтобы вычислить падение напряжения внутри источника тока, используем закон Ома для участка цепи:

\[{I=\frac{U_r}{r}\to U}_r=Ir\ \left(1.2\right).\]

Ответ: $U_r=Ir,$ $R=\frac{\mathcal E}{I}-r.$

Пример 2

Задание: Источник тока имеет внутреннее сопротивление равное r=1 Ом и ЭДС равную $\mathcal E$=10В. Найдите КПД источника ($\eta $), если ток в цепи равен I=5 А.

Коэффициент полезного действия источника тока равен отношению:

\[\eta =\frac{P"}{P}\left(2.1\right),\]

где $P"$ - мощность (полезная мощность), которая выделяется внешним участком цепи, $P$- полная мощность, которая развивается источником. При этом:

\ \

Следовательно, КПД источника можно выразить как:

\[\eta =\frac{I^2R\ }{\mathcal E I}=\frac{IR}{\mathcal E}\left(2.4\right).\]

Следуя закону Ома для замкнутой цепи запишем:

Выразим из (2.5) электросопротивление внешней цепи, получим:

Подставим (2.6) в выражение для КПД (2.4), получим:

\[\eta =\frac{I\left(\frac{\mathcal E}{I}-r\right)}{\mathcal E}=\frac{\mathcal E-Ir}{\mathcal E}.\]

Подставим численные данные, проведем вычисления, получим:

\[\eta =\frac{10-5\cdot 1}{10}\cdot 100\%=50\%\]

Замкнутая (полная) электрическая цепь состоит из и сопротивления.

Источник тока имеет ЭДС () и сопротивление (r), которое называют внутренним . ЭДС (электродвижущая сила ) - работа сторонних сил по перемещению положительного заряда по замкнутой цепи (физический смысл аналогичен напряжению , потенциалу). Полное сопротивление цепи - R+r.

,
где величина - падение напряжения внутри источника тока.

2) Если внешнее сопротивление замкнутой цепи равно нулю, то такой режим источника тока называется коротким замыканием.

Коэффициент полезного действия

Мощность, выделяемая на внешнем участке цепи, называется полезной

При условии R=r мощность, выделяемая во внешней цепи, максимальная для данного источника и равна

Полная мощность - сумма полезной и теряемой мощности

Коэффициент полезного действия источника тока - отношение полезной мощности к полной


Для существования постоянного тока в цепи необходимо непрерывно разделять электрические заряды, которые под действием сил Кулона стремятся соединиться. Для этого необходимы сторонние силы. ЭДС характеризует действие этих сторонних сил. А сама эта работа осуществляется внутри источников ЭДС. Электрические заряды внутри источников ЭДС движутся против кулоновских сил под воздействием сторонних сил.

Сравнивая электрический ток с течением жидкости в трубах, можно сказать, что источник работает, как насос, который подает воду из нижнего резервуара в верхний, из которого она под действием силы тяжести стекает в нижний резервуар.

В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока из-за наличия внутреннего сопротивления.

В настоящее время выпускают множество различных источников ЭДС - от маленьких батареек для часов до генераторов.

Внутри источника тока происходит разделение зарядов из-за процессов, происходящих внутри источника, например, химических процессов.

Гальванический элемент - химический источник тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите (батарейки, аккумуляторы).