Сравнительный обзор шести SAS RAID-контроллеров. Сравнительный обзор шести SAS RAID-контроллеров Raid контроллеры lsi

Сколько должно быть разъемов на контроллере?

Наболело! Чуть ли не каждый день вижу вопросы такого плана: “В сервер можно поставить 16 (24) жестких диска, а SAS RAID контроллер у меня только 8-ми (или того хуже 4х) портовый! Что мне делать? Это наверное ошибка в конфигурации?!”. Ну что на это можно сказать? Может быть это конечно и ошибка, но скорее всего нет. Как же так? А все очень просто: SAS это протокол последовательной передачи данных и поддерживающий коммутацию. Если Вам нужно к серверу подключить 7 рабочих станций, Вы же не ставите в сервер 7 сетевых карт, а используете коммутатор на 8 портов, который позволяет всем машинам получить доступ к серверу. Точно также и в данной ситуации: либо в самом корпусе (прямо на бэкплейне), либо в виде отдельной карты присутствует аналог этого самого коммутатора. Только в данном случае он называется SAS-экспандером и позволяет подключить к RAID контроллеру гораздо больше дисков, чем есть SAS линий на самом контроллере. Наиболее распространены экспандеры на базе чипов LSI: LSISASx28 , LSISASx36 или LSISAS2x36 (для 6Gbps SAS). В частности, на бэкплейнах в корпусах Supermicro используются экспандеры именно LSI. Отдельные карты с экспандерами также существуют, например в России проще всего найти их среди продукции компании Chenbro .

На рисунке - возможная схема подключения с двумя RAID контроллерами для отказоустойчивости к дискам через экспандер. Правда, надо сказать что это довольно специфичная конфигурация, которую мы обычно наблюдаем во внешних дисковых системах, в серверах же используется более простая схема, в которой нет ни второго контроллера, ни второго экспандера.

Вот вроде бы и разобрались - для подключения 24х дисков вовсе не нужно 24 порта на контроллере, достаточно и 4х (так как обычно именно 4 SAS линии используется для соединения контроллера с экспандером). А используя контроллер с 4мя внутренними портами и 4мя внешними можно не только задействовать (при использовании экспандера все диски в сервере, но и обеспечить возможность дальнейшего увеличения дисковой подсистемы за счет добавления внешней дисковой полки (JBOD).

Но сразу возникает несколько новых вопросов: “А нужно ли использовать экспандер? Может быть он так замедляет работу, что от него надо отказаться? У меня целых 24 (а то и еще больше) диска подключено только по 4м линиям SAS - наверное это будет очень медленно?”.

Попробуем найти ответы. Начнем с конца: 4 SAS линии по 3Gbps дают в сумме 12Gbps, а это целых 1.5 Гига-байта в секунду. Можно ли реально достичь такой пропускной способности? В принципе можно, но (а) нужно помнить, что наверное с этим потоком нужно еще что-то делать, а не просто читать или писать и (б) дисков для этого потребуется (даже при благоприятном стечении обстоятельств) заметно больше десятка. А если учесть, что при типичной работе сервера запросы к дисковой подсистеме идут в значительной степени случайные, то полосы пропускания в 12Gbps оказывается вполне достаточно - можете проверить сами на любом своем сервере, запустив perfmon (под Windows) и посмотрев на трансфер с дисков во время работы. А что до возникновения дополнительных задержек при использовании экспандеров, то они конечно есть, но “поймать” (измерить) их Вам не удастся - настолько они малы по сравнению с задержками при обращении к жесткому диску. Есть и еще один аргумент, чтобы не бояться экспандеров - в RAID-контроллерах, где количество портов больше 8, зачастую это объясняется именно наличием интегрированного на плате экспандера - например Adaptec

в комплект не входит.

Высокопроизводительный 6-Гб/с аппаратный RAID-контроллер 9260-8i с 8ю внутренними портами (2 разъема SFF8087) и объемом встроенной памяти 512МБ, позволяющий подключить до 128 накопителей SAS и SATA с технологией RAID-on-Chip.

Линейка высокопроизводительной продукции MegaRAID SATA+SAS 9260 позволяет добиться высочайших скоростей передачи данных до 2880МБ/с на чтение, 1850МБ/с на запись и до 147000 операций ввода-вывода при произвольном доступе к данным, что позволяет обеспечивать работу любых даже самых требовательных приложений, таких как базы данных и видеообработка.

Эти продукты позволяют использовать носители 3 Гб/с и 6 Гб/с с поддержкой внутреннего подключения как SATA-, так и SAS-накопителей.

Внутреннее подключение SATA- или SAS-накопителей сервера. Позволяет работать с 128 устройствами с помощью экспандеров SAS. Технология LSI RAID-on-Chip (ROC) и основной интерфейс PCI Express для приложений, требующих широкой полосы пропускания.

Опциональный резервный аккумулятор для предотвращения потери данных в случае отказа сервера.

Поддержка дополнительного программного обеспечения CacheCade, FastPath и Recovery/Snapshots.

Основные особенности

  • Максимально доступный уровень производительности: в режиме считывания: 2.875Мбайт/с, в режиме записи: 1.850Мбайт/с
  • PCI Express 2.0 обеспечивает более высокую скорость передачи сигнала для приложений, работающих с широкой полосой пропускания
  • Максимальная гибкость решения за счет поддержки дисковых накопителей SATA и SAS 3Гбит/с и 6Гбит/с
  • Технология кодирования SafeStore Encryption обеспечивает более надежную защиту данных
  • Низкопрофильный дизайн MD2 удобный для размещения в компактных архитектурах 1U и 2U

Технические характеристики

Параметр Описание
Процессор LSISAS2108 RAID-on-Chip (ROC) 800МГц PowerPC®
Быстродействие До 6Гбит/с на порт
Интерфейсы

Восемь внутренних портов SATA+SAS
Два внутренних интерфеса SFF-8087

Память Кэш-память - 512Мб DDRII (800МГц)
Кол-во поддерживаемых устройств до 32 дисковых накопителей SATA и/или SAS
Поддерживаемые уровни RAID RAID - уровень 0, 1, 5 и 6
Расширенный RAID 10, 50 и 60
Интерфейс хост-контроллера X8 PCI Express версии 2.0
Форм-фактор Низкопрофильный формат MD2 (167.64 мм х 64.42 мм)
Функциональные возможности

Блок аварийного питания (опция, прямое подключение)

Автоматическое возобновление работы после модернизации

Автоматическое возобновление работы после восстановления

Онлайновое увеличение емкости (OCE)

Онлайновая миграция с одного на другой уровень RAID (RLM)

Система кодирования данных SafeStore

Функция немедленного удаления данных

SSD-поддержка с технологией SSD Guard™

Глобальное и специализированное резервирование, аварийное горячее резервирование с функцией восстановления данных

Автоматическое восстановление

Структурная целостность для горячего резервирования

Аварийное горячее резервирование SATA для массивов SAS

Многоканальная структура поддержки для одного контроллера (переключение при отказе)

Распределение загрузки

Комплексное программное обеспечение для управления RAID массивами

Уважаемые покупатели.
Обращаем Ваше внимание, что размещенная на данном сайте справочная информация о товарах не является офертой, наличие и стоимость оборудования необходимо уточнить у менеджеров ООО "НАГ", которые с удовольствием помогут Вам в выборе оборудования и оформлении на него заказа.

Производитель оставляет за собой право изменять внешний вид, технические характеристики и комплектацию без уведомления.

С момента анонса контроллеров серий 9260, исключая модели с приставкой “CV”, прошло примерно два года. За это время в русскоязычной части интернета нашими коллегами по ИТ-журналистике было опубликовано несколько обзоров, описывающих достоинства этой серии, и проведено немало тестов. Дабы не повторять весь путь наших коллег, мы решили раскрыть значение аббревиатуры “CV” в контроллерах обновленной серии. Поэтому тесты мы проводили с целью выявить разницу между уже знакомыми рынку контроллерами и обновлёнными, с маркировкой “CV”. Конечно, нам все же придется проделать те же шаги, что и наши коллеги, а именно снять результаты тестов уровней RAID. Но мы рассчитываем на то, что сравнительный анализ результатов работы контроллера с “Cache Cade” будет по достоинству оценен нашими читателями. Но обо всем по порядку.

Спецификации контроллера

Начнём с рассмотрения аппаратной части контроллера, его наиболее важных характеристик и возможностей, функционала, который он несет "на борту" и который обеспечивается дополнительным ПО.

Основные аппаратные и программные характеристики приведены в таблице

LSI MegaRAID SAS 9260CV-8i

Решение Внутренние SATA+SAS контроллеры на восемь портов для приложений интенсивного ввода-вывода. Широкая полоса пропускания, подключение SAS, SATA или твердотельных накопителей. Снижение затрат на техническое обслуживание и совокупной стоимости владения благодаря применению технологии CacheVault
Размеры Низкопрофильный формат MD2 (6,6 дюймов X 2,536 дюйма)
Разъемы Два внутренних разъема Mini-SAS SFF-8087
Поддержка устройств До 128 жестких дисков SAS и (или) SATA и твердотельных накопителей
Тип шины главного процессора PCI Express х8 версии 2.0
Скорость передачи данных До 6 Гбит/с (на каждый порт)
Процессор ввода-вывода SAS-контроллера LSISAS2108 с технологией RAID on Chip (ROC)
Объем кэш-памяти 512 Мбайт DDRII SDRAM
Защита кэша Флэш-защита кэш-памяти MegaRAID CacheVault
Основные характеристики защиты данных RAID
  • RAID – уровни 0, 1, 5 и 6
  • Расширение RAID до 10, 50 и 60
  • Оперативное увеличение емкости (OCE))
  • Оперативная миграция с одного на другой уровень RAID (RLM)
  • Автоматическое возобновление работы после отключения питания в связи с модернизацией или реконструкцией массива (RLM)
  • Многоканальная структура поддержки для одного контроллера (переключение при отказе)
  • Распределение загрузки
  • Конфигурация сегмента чередования данных до 1 Мб
  • Быстрая инициализация, обеспечивающая быструю настройку массива
  • Проверка на согласованность целостности данных
  • Регулярная проверка — сканирование и восстановление носителей
  • Поддержка 64 логических дисков
  • Поддержка до 64 Тбайт на одно логическое устройство (LUN)
  • Конфигурация диска (COD), совместимая с форматом DDF
  • Поддержка S.M.A.R.T
  • Общее и раздельное горячее резервирование с функцией восстановления
Управление RAID
  • MegaRAID Management Suite
  • MegaRAID Storage Manager
  • MegaCLI (интерфейс с командной строкой)
  • WebBIOS
Опциональная оптимизация твердотельного накопителя

Программное обеспечение MegaRAID CacheCade увеличивает производительность ввода-вывода, используя в качестве кэш-памяти твердотельный накопитель
Программное обеспечение MegaRAID Fast Path обеспечивает производительность до 150 000 операций ввода-вывода в секунду для массивов твердотельных накопителей

Контроллер 9260CV-8i относятся к серии Value Line (серия доступных решений). От контроллеров более дорогой серии Feature Line эту модель отличает наличие CacheVault (памяти NAND Flash) "на борту" контроллера и использование ионисторов (суперконденсаторов) вместо привычных литий-ионных резервных батарей (BBU). В отличие от устройств серии Entry, в 9260CV-8i используется более мощный процессор LSISAS2108 800 МГц с архитектурой PowerPC.

Типы поддерживаемых уровней RAID изменений не претерпели. Заявлены те же знакомые типы RAID и их модификации: 0, 00, 1, 10, 5, 50, 6 и 60.

Как мы упомянули выше, место привычного резервного аккумулятора BBU заняли суперконденсаторы, которые стали составной частью новой защиты кэша (Cache Vault). Основной принцип действия Cache Vault практически идентичен использованию BBU. Суперконденсатор поддерживает питание кэша. Но, если в случае классического BBU с литий-ионными ячейками информация в ОЗУ контроллера сохраняется в течение, примерно, 72-х часов, после чего данные пропадают, то ионистор, помимо того, что поддерживает в кэш рабочем состоянии, позволяет произвести запись информации из кэша на модуль флэш-памяти NAND, находящийся на контроллере. При возобновлении подачи питания информация из NAND вновь будет переписана в кэш контроллера. По данным LSI (LSI MegaRaid CacheVault Technology) информация в NAND может храниться примерно три года.

Программное обеспечение

Управлять контроллером и производить его настройку удобнее всего через MegаRAID Storage Manager. Также существует так называемый WebBIOS — BIOS контроллера, вызываемый при инициализации во время загрузки сервера, а также командная строка (CLI).

За отдельные деньги функции контроллера могут быть значительно расширены. В дополнительный функционал входят следующие фирменные технологии LSI.

MegaRAID FastPath

Позволяет оптимизировать работу SSD дисков подключенных к контроллеру и увеличить количество операций ввода-вывода транзакционных приложений. Компания LSI уверяет о трехкратном увеличении производительности, до 150 000 операций ввода/вывода в секунду, при использовании MegaRAID FastPath.

MegaRAID CacheCade

Функция при помощи, которой SSD диск используется в качестве кэша для массива жестких дисков, что позволяет примерно в 50 раз повысить производительность в web-ориентированных приложениях, в базах данных и в обработке транзакций в реальном времени (OLTP)

MegaRAID Recovery

Используя технологию моментальных снимков, данная функция позволяет создавать образы системы на уровне блоков. Возможно восстановление как отдельных папок и файлов, так и ранних состояний системы в целом.

MegaRAID SafeStore

Совместно со встроенной в диски системой шифрования SED (self-encrypting drives) обеспечивает высокий уровень безопасности от неавторизированного доступа и попыток изменить данные.

Существует два варианта активации перечисленных функций. Первый — использовать аппаратный ключ, то есть микросхему, устанавливаемую прямо на контроллер. Второй — ввод программного ключа через RAIDweb console, либо через оснастку MegaRAID Storage Manager, устанавливаемую непосредственно в операционной системе. Варианты равносильны с точки зрения результата, а пользователь может выбрать наиболее удобный для него способ активации функций.

Методика тестирования

Наша методика основывается на собственном многолетнем опыте работы с серверным ПО. Но, как это обычно бывает, доля субъективизма присутствует. Поэтому мы готовы оттачивать методику совместно с читателями. Оставляйте в конце статьи свои пожелания.

Нами была использована платформа Windows 2008 R2, а для оценки подсистемы ввода/вывода использовалась утилита IOMeter версии 2006.07.27.

В тестировании нами использовался сервер Asustek RS720-E6. Конфигурация приведена в таблице ниже.

Конфигурация тестового сервера Asustek RS720-E6
Компонент Характеристики
Системная плата ASUS Z8PE-D18
Микропроцессор 2 х Intel Xeon E5620 (Westmere-EP), 2,40 ГГц, кэш 12 Мбайт
Оперативная память 12 х Samsung DIMM DDR3-1333 4 Гбайт PC3-10600 ECC Registered M393B5273BH1-CH9
Жёсткие диски 7 х Hitachi Ultrastar 15K600 SAS-2.0 600 Гбайт 15000 об/мин 64 Мбайт HUS156060VLS600
Твердотельный накопитель Intel SSD 510 250 Гбайт

Один из семи дисков мы отвели под операционную систему. Корпус используемого нами сервера поддерживает установку 12 дисков, но из-за того, что его оснастка backplane не содержит экспандер, и подключение контроллера осуществляется через обычные 7-конатактные SATA-кабели, мы использовали только 7 дисков. Также одно посадочное место мы использовали для SSD под CacheCade.

Для тестирования мы воспользовались готовыми шаблонами в IOmeter, а именно WebServer, DataBase, FileServer, WorkStation. Так же мы использовали шаблоны последовательного и произвольного чтения/записи с блоками данных различных размеров — от 512 байт и до 1 Мбайт с шагом, в два раза превышающим предыдущий блок. Глубину очереди команд выбрали равной 30, что позволило нагрузить дисковую подсистему. Большая глубина очереди команд характерна для корпоративного окружения, где дисковая подсистема сталкивается с большой нагрузкой. В качестве такой нагрузки могут выступать виртуальные машины и терминальные серверы. Как видно из характеристик нашей платформы, она как раз предназначена для корпоративного сектора. Опытным путем было выявлено, что 30 команд является нижней границей с которой начинается повышенная нагрузка на дисковую подсистему. Тестам подверглись все уровни RAID и их модификации, поддерживаемые контроллером, с использованием Cache Cade и без него: 0, 00, 1, 10, 5, 50, 6. Исключением оказался уровень 60, так как отсутствие экспандера не позволило установить восемь дисков.

На первом этапе была протестирована производительность ввода/вывода 14 конфигураций. Список представлен в таблице.

Тестовые конфигурации RAID
RAID-00 4 диска
RAID-00 + CacheCade 4 диска
RAID-0 5 дисков
RAID-0 + CacheCade 5 дисков
RAID-1R 4 диска
RAID-1 + CacheCade 4 диска
RAID-5 5 дисков
RAID-5 + Cache Cade 5 дисков
RAID-6 5 дисков
RAID-6 + CacheCade 5 дисков
RAID-10 4 диска
RAID-10 + CacheCade 4 диска
RAID-50 6 дисков
RAID-50 + CacheCade 6 дисков

RAID-1 из четырех дисков аналогичен RAID10, что подтверждается тестами.

Вторым этапом мы сделали несколько измерений с виртуальным машинамb, для чего мы развернули роль Hyper-V и запустили одновременно 4 виртуальные машины с Windows 7. Каждая виртуальная машина соответствовала одному шаблону IOmeter: две web-серверам, например корпоративному (внутреннему) и внешнему, серверу баз данных и файловому серверу. Таким образом, можно проследить работу устройства в реальном сценарии. Работу данного теста решено было проверить с наиболее популярной на практике конфигурацией массива — RAID5. CacheCade был задействован.

Результаты тестирования

Подробные цифры по всем графикам можно посмотреть в .

Шаблон DataBase без использования CacheCade (СС)

Шаблон FileServer без использования CacheCade (СС)

Шаблон WorkStation без использование CacheCade (CC)

Шаблон WebServer без использование CacheCade (CC)

На первых трех графиках лидирующие позиции занимают RAID-0 и RAID-50. RAID-50 выигрывает у RAID-10. На графике результатов работы с шаблоном WebServer в лидерах уже оказывается RAID-50 и за ним подтягиваются все остальные. Причина ухода в лидеры RAID-50 в количестве дисков — на один больше, чем у остальных уровней RAID, кроме RAID-6. Во-вторых, в web-шаблоне блоки данных только читаются, несмотря на то, что чтение выполняется произвольно. RAID-6 во всех шаблонах, кроме WebServer, вообще приходится тяжко, так как контроллеру необходимо вычислять контрольную сумму для двух дисков.

Рассмотрим те же шаблоны только с применением CacheCade:

Тест призван показать прирост производительности или отсутствие оного в операциях ввода/вывода

Шаблон DataBase c использованием CacheCade (СС)

Шаблон FileServer с использованием CacheCade (СС)

Шаблон WorkStation с использование CacheCade (CC)

Шаблон WebServer с использование CacheCade (CC)

При сравнении результатов можно отметить, что графики практически идентичны, но небольшое увеличение количества операций на некоторых типах массивов RAID все же присутствует, но оно столь мало, что почти во всех результатах им можно пренебречь.

Стоит также отметить, что для некоторых уровней RAID результаты с CacheCade оказались, пусть незначительно, но меньше, чем без его применения. Особенно это видно по шаблону FileServer, на уровнях RAID 00, 5, 6 и 10. Менее всего снижение проявилось в шаблоне WebServer — только в RAID5 результат оказался заметно ниже полученного без Cache Cade. Трудно сказать, с чем конкретно данное снижение может быть связано. Можно предположить, что происходит это из-за 20% операций записи, заданных в настройках шаблона.

Теперь посмотрим, насколько дополнительный кэш в виде SSD диска даст прирост по скорости последовательного чтения и записи. Вполне возможно, что он может показаться лишним, так как скоростные характеристики RAID массивов, как минимум, сравнимы с таковыми у одиночных SSD дисков. Как бы то ни было, тесты покажут.

Последовательное чтение, мегабайты в секунду, без использования CacheCade

По графику видно, что первое место занимает RAID 0, что логично, поскольку, чтение производится параллельно с нескольких дисков, на 5 дисках скорость в пике достигает 930 мегабайт в секунду. За ним следуют, практически, вровень три массива: RAID5, RAID00 и давший просадку на блоках размером 16 кбайт RAID50. RAID1 и RAID10 показывают идентичные результаты, поскольку, как было сказано выше, по сути, идентичны и раскрывают свой потенциал в данном тесте на блоках в 512 кбайт. RAID6 показывает равномерный результат, начиная с блоков размером от 4 кбайт.

Последовательно чтение, мегабайты в секунду, с использованием CacheCade

Вариант, при котором используется Cache Cade, дает практически идентичные результаты, с той лишь разницей, что падение скорости на блоках в 16 кбайт в случае RAID50 здесь происходит более резко. Известно, что скорость чтения зависит от размера stripe — непрерывной последовательности дисковых блоков. Возможно, что на данный провал и повлиял его размер, который по умолчанию для контроллеров устанавливается равным 64 кбайт, и который оставался неизменным во время проведения всех тестов. Возможно, что падение могло быть вызвано работой с данным блоком на этом уровне RAID прошивкой контроллера. Мы постараемся выяснить, с чем связанно такое поведение контроллера у инженеров LSI.

Последовательная запись, мегабайты в секунду, без использования CacheCade

При записи нагрузка на диски возрастает, соответственно, скорость записи будет меньше в сравнении с чтением. Результаты более стабильные — таких провалов, как при чтении, уже нет. При увеличении блока записываемых данных до 4-16 кбайт скорость записи растет, далее практически не меняется.

Последовательная запись, мегабайты в секунду, с использованием CacheCade

И снова результаты очень похожи. Для некоторых блоков в данном тесте разница составила буквально 100 кбайт/с, причём не в пользу CacheCade. Но такой разницей опять же можно пренебречь. Единственные уровни RAID, которым кэш пошел на пользу — это RAID1 и RAID5. Скорость записи в случае RAID1 выросла на 100 Мбайт/с в случае блоков размером 2 кбайт, а в RAID5 — 50 Мбайт/с при блоках 8 кбайт.

Произвольное чтение, мегабайты в секунду, без использования CacheCade

Произвольное чтение не сильно, но все же разделило RAID-массивы на три разные группы по полученным результатам. Заметно это на больших блоках. В первой группе RAID1 и RAID10, во второй — RAID0 и RAID00, в третьей -RAID5, RAID50 и RAID6. Во время чтения на массивы не действуют ограничения, имеющие место в случае записи — вычет контрольных сумм (RAID5, 50 и 6) и дублирование информации (RAID1 и RAID10). В лидерах здесь RAID1 и RAID10, так как имеют меньшее количество дисков по сравнению с остальными уровнями RAID.

Произвольное чтение, мегабайты в секунду, с использованием CacheCade

График аналогичен предыдущему, с той лишь разницей, что технология Cache Сade незначительно увеличила скорость работы c блоками 256 кбайт и 512 кбайт для RAID1 и RAID10.

Произвольная запись, мегабайты в секунду, без использования CacheCade

Запись вносит свои коррективы. По сравнению с предыдущими графиками скорость упала примерно на 50 Мбайт/с. Помимо того, что головки вынуждены "пробегать" по диску в поисках данных в хаотичном порядке, внося задержки, также оказывают влияние и параметры RAID-массивов, которые обеспечивают их надежность (контрольные суммы и дублирование).

Произвольная запись, мегабайты в секунду с использованием CacheCade

И снова вариации минимальны. В шаблонах произвольной записи, SSD-кэш пытается увеличить производительность дисковой подсистемы, но сталкивается со сложностями. Несмотря на высокую производительность SSD при произвольной записи, всё упирается в расчёт дополнительных контрольных сумм (RAID5, 50 и 6), дублирование информации (RAID1, 10) и количество дисков (RAID0, 00) — в выполнении этих накладных задач SSD не поможет.

Теперь обратимся к результатам измерений количества операций ввода-вывода.

Последовательное чтение, операции в секунду, без использования CacheCade


Последовательные чтение, операции в секунду, с использованием CacheCade

Последовательная запись, операции в секунду, без использования CacheCade

Последовательная запись, операции в секунду, с использованием CacheCade

Из графиков видно, что весь свой потенциал CacheCade раскрывает при работе с последовательными операциями ввода вывода. Разница между тестами с CacheCade и без него для некоторых блоков данных составляет более 100 000 операций в секунду. Например, для RAID5 в случае чтения это 275 000 IOPS с CacheCade против 167 000 IOPS без использования кэша. Но это справедливо не для всех уровней RAID, например для RAID0, RAID10, RAID6 можно заметить разницу не в пользу CacheCade. Почему так происходит, мы затрудняемся ответить. Вопрос зададим специалистам LSI и, получив ответ, внесём разъяснения в статью.

Произвольное чтение, операции в секунду, без использования CacheCade

Произвольное чтение, операции в секунду, с использованием CacheCade

Произвольная запись, операции в секунду, без использования CacheCade

Произвольная запись, операции в секунду, с использованием CacheCade

Произвольные операции не получают преимуществ от использования CacheCade.

Тесты виртуальных машин

Результаты для одной виртуальной машины

Результаты для четырёх одновременно работающих виртуальных машин.

Вообще наша затея с тестом виртуальных машин относится к категории "а почему бы не попробовать?" Мы попытались посмотреть на работу контроллера в практических условиях, приближенных к "боевым".

Результаты тестов виртуальных машин нас не удивили. Единственное отличие, которое бросилось в глаза, касалось немного более высоких результатов в готовых шаблонах (DataBase, FileServer и WebSer). Возможно, причина кроется в особенности работы виртуальной машины с дисковой подсистемой. При непосредственно работе с дисковой подсистемой, утилите тестирования IOmeter передавался неразмеченный массив (Raw). В случае работы с виртуальной машиной, массив сначала форматировался (размер кластера 4 кбайт), затем для каждой виртуальной машины выделялся пул посредством создания файла *.VHD объемом в 100 Гбайт, который выступал для виртуальной машины в качестве диска. Можно предположить, что это каким-то образом позволило увеличить результаты в стандартных шаблонах.

Тем не менее, при одновременном запуске четырех виртуальных машин результаты, как и следовало ожидать, сократились примерно в четыре раза. Количество виртуальных машин мы выбрали не случайно — в рекомендациях от сотрудников VmWare и Microsoft фигурировали четыре виртуальные машины.

Заключение

По результатам тестов мы убедились в том, что технология CacheCade работает, с некоторыми оговорками, но функции свои выполняет. Результаты тестов у нас получились немногим выше, чем те, которые существуют в сети для контроллера 9260-8i. Это не связанно с особенностью экземпляра контроллера, который достался нам, так как ничем кроме Cache Vault от своего собрата он не отличается — ни скоростью памяти, ни характеристиками процессора, ни другими параметрами. Скорее, роль сыграли производительные комплектующие, которые мы использовали: новая платформа, быстрые диски (15 000 об/мин) с интерфейсом SAS2 и, конечно же, функция CacheCade, хотя контроллер и без помощи SSD даёт хорошие результаты.


После перехода SCSI на последовательные "рельсы" профессиональные и полупрофессиональные RAID-контроллеры заметно изменились. Параллельный интерфейс SCSI обеспечивает пропускную способность до 320 Мбайт/с, которая разделяется между всеми устройствами, подключёнными к шине с помощью дорогого и капризного кабеля. Интерфейс Serial Attached SCSI (SAS), напротив, поддерживает скорость 300 Мбайт/с на порт, многоканальные или одноканальные кабели, избыточные каналы, внешние и внутренние устройства. Контроллеры совместимы и с интерфейсом SATA, то есть вы можете использовать как ёмкие накопители SATA, так и высокопроизводительные винчестеры SAS. Наконец, переход с PCI-X на PCI Express идёт полным ходом. Как мы считаем, настало время рассмотреть четыре RAID-контроллера для серверов начального уровня.

Многие пользователи до сих пор интересуются, стоит ли покупать раздельный RAID-контроллер, учитывая наличие таких мощных интегрированных SATA-решений, как Intel ICH9R, которые можно обнаружить во многих топовых материнских платах, например, Asus P5K-WS (чипсет P35 с интерфейсом PCI-X) или P5K64-WS (четыре слота PCI Express). Поскольку производители оснащают свои топовые модели высококачественными стабилизаторами напряжения и лучшими компонентами, то разница в качестве между high-end настольной материнской платой и low-end серверным продуктом заключается только в наборе функций. При наличии шести портов SATA/300 на такой материнской плате, расширенных функций управления RAID и дву- или четырёхядерного процессора, который займётся и расчётом информации избыточности RAID 5, зачем покупать внешний дорогой RAID-контроллер?

Подобные интегрированные решения, вероятно, хорошо подойдут для небольшого сервера для рабочих групп, когда от массива требуется хранить данные проекта, пользовательскую информацию и приложения, но при росте нагрузки ограничения проявятся весьма быстро. Если вам требуются более сложные уровни RAID, такие, как RAID 50 или 60, то встроенные решения будут мало полезны. Или, скажем, если вам вдруг потребуется подключить больше шести винчестеров, придётся переходить на другой контроллер. А если вам нужно запустить массив во внешней оснастке, либо вы хотите получить весь набор функций управления жёсткими дисками, тогда SAS, устаревшие решения SCSI или другие собственные технологии производителей остаются единственно возможным выбором.

Мы определённо не рекомендуем собственные технологии производителей, которые ограничивают в выборе контроллера и оснастки. Вся необходимая информация о Serial Attached SCSI приведена в статье Тесты жёстких дисков и контроллеров SAS: дни SCSI сочтены , включая детали интерфейса, кабели, возможности расширения, оснастки, жёсткие диски, host-адаптеры и т.д. Винчестеры SAS последнего поколения обеспечат намного более высокую производительность, чем модели SATA, однако совместимость с SATA и гибкость использования является неплохой причиной, чтобы использовать унифицированный RAID-контроллер в вашей системе.


Сможете различить? Верхний разъём - SATA, а нижний принадлежит накопителю Seagate Savvio SAS.

Соединения SAS и SATA являются полнодуплексными коммутируемыми типа "точка-точка", то есть здесь уже нет необходимости присваивать каждому устройству свой ID или терминировать шину. Данные по соединению могут передаваться и приниматься одновременно. SAS и SATA поддерживают "горячее подключение". Для ускорения таких параллельных протоколов, как Ultra320 SCSI, требовалось либо расширить шину, что приводило к большему числу проводов, либо увеличить тактовые частоты, но при этом возникали проблемы с задержками сигнала. А последовательные соединения "точка-точка" могут просто использоваться совместно. Собственно, у SAS данный принцип как раз и используется, когда несколько соединений SAS комбинируются вместе для подключения внешних оснасток.

Существует только одно механическое различие между SAS и SATA: оба интерфейса используют одинаковую раскладку для данных и питания, но у SATA два разъёма физически разделены. У SAS оба разъёма соединены, то есть вы сможете подключать SATA-винчестер к SAS-контроллеру, но у вас не получится подключить SAS-накопитель к SATA-контроллеру через разъём SATA (SFF 8482). Работа винчестеров SATA на SAS-контроллере возможна по той причине, что протокол Serial ATA менее сложный и попросту туннелируется в SAS при передаче. Благодаря широким унифицированным разъёмам SAS физическое подключение выполняется весьма надёжно, разъёмы не могут случайно выпасть. Основная причина небольшой разницы в двух разъёмах заключается в расширенном наборе функций SAS, который вы не обнаружите у SATA-контроллеров: SAS поддерживает двухпортовые соединения, обеспечивая избыточное подключение жёсткого диска (необходимая опция для high-end хранилищ) и поддерживает так называемые экспандеры (расширители) для расширения устройств хранения, подобно тому, как сетевой коммутатор работает с несколькими клиентами.

Что касается производительности, то между двумя интерфейсами разница невелика. Serial ATA 2.5 обеспечивает максимальную пропускную способность 3 Гбит/с на порт с кодированием 8/10 бит, что даёт 2,4 Гбит/с или 300 Мбайт/с на порт для передачи данных. То же самое относится и к SAS, хотя в планах значится появление интерфейсов на 6 и 12 Гбит/с, что даст пропускную способность 600 и 1 200 Мбайт/с на порт.


SAS слева, SATA справа.


Для группировки портов SAS (обычно по четыре) используется разъём Mini SAS 4i (SFF-8087).

Тенденции винчестеров: наступление 2,5" моделей

Основная причина, почему 3,5" винчестеры продолжают доминировать в профессиональной сфере, заключается в физических габаритах, которые прекрасно соответствуют широким шлейфам SCSI. Однако меньший 2,5" форм-фактор намного более привлекателен, поскольку он сочетает высокие скорости вращения шпинделя с меньшей нагрузкой на компоненты из-за меньшего диаметра вращающихся пластин. Но сложные интерфейсы SCSI так и не смогли проникнуть в 2,5" мир. Интерфейс SAS изменил ситуацию: разъём SFF 8484 позволяет подключать 2,5" или 3,5" накопители, по протоколам SAS или SATA. 2,5" форм-фактор привлекательнее для производительных хранилищ, поскольку можно увеличить плотность расположения приводов, повышая пропускную способность и число операций ввода/вывода в секунду. В то же время, 2,5" винчестеры потребляют ощутимо меньше энергии, чем 3,5" модели. Энергопотребление становится серьёзной проблемой для профессиональных сфер и центров обработки данных, где используются десятки, сотни или даже тысячи жёстких дисков, и их требуется не только питать, но и охлаждать, что тоже требует немало энергии. Отсюда вполне понятно, что движущей силой 2,5" форм-фактора является цена.

Линейка Savvio от Seagate стала первой коммерчески успешной в секторе 2,5" винчестеров корпоративного уровня. Накопители Savvio 10K.2 сменили первые модели 10K.1, а винчестеры Savvio 15K.1 являются одними из самых производительных SAS-моделей на рынке. Мы не смогли получить восемь жёстких дисков Savvio 15K.1 вовремя, поэтому решили остановиться на восьми моделях Savvio 10K.2. Сегодня доступны варианты с ёмкостью 73 и 146 Гбайт. Мы выбрали меньший размер, чтобы наши тесты проводились за разумный промежуток времени. Винчестеры оснащены 16 Мбайт кэша, используют одну 2,5" пластину и интерфейс SAS на 3 Гбит/с. Как и другие накопители корпоративного уровня, они поставляются с пятилетней гарантией.

Как насчёт 3,5" моделей?

Они не умрут, но 3,5" винчестеры SAS будут постепенно вытесняться из корпоративного высокопроизводительного сектора, уступая место моделям с 2,5" форм-фактором. Если рассматривать высокую ёмкость, то SATA-модели на 7 200 об/мин остаются лучшим компромиссом между производительностью и ёмкостью, они уже достигли ёмкости в 1 Тбайт на жёсткий диск, а модели SAS и SCSI на 10 000 об/мин пока держатся на уровне 300 Гбайт. Чтобы удовлетворить потребности корпоративных хранилищ, все крупные производители жёстких дисков предлагают винчестеры SATA, валидированные для работы в режиме 24/7 с пятилетней гарантией. Хорошими примерами можно считать Seagate Barracuda ES , Hitachi UltraStar A7K1000 или E7K500, а также Western Digital RAID Edition (RE).

Прошивка: 5.2.0 Build 12415.

Первый RAID-контроллер в нашем тестировании - Adaptec RAID 3805. Эта компания дифференцирует продукты начального уровня и производительные решения, но нумерация данной модели требует некоторых пояснений. Каждый продукт, который начинается с цифры "3", как в данном случае, является унифицированной моделью SAS/SATA с пропускной способностью 3 Гбит/с на порт. Вторая цифра обозначает доступное число портов, то есть четыре для RAID 3405, восемь для RAID 3805 или 16 для RAID 31605. Если перед числом приводов стоит "0", то контроллер поддерживает внешние оснастки. Последняя цифра может быть "0" или "5", где "0" означает host-поддержку RAID, а "5" - аппаратное ускорение RAID 5 и RAID 6. Все унифицированные контроллеры используют интерфейс PCI Express, так что модели PCI-X остались в прошлом. Кстати, не следует путать RAID 3805 и RAID 3085, где последний является внешней картой с более скоростным процессором IOP.

RAID 3805 - современная модель с восемью портами SAS и аппаратным ускорением RAID для интерфейса PCI Express. Продукт позиционируется на начальный/средний уровень и может использоваться под большим числом ОС, включая все версии Windows, начиная с Windows 2000, а также Red Hat и SuSe Linux, Novell Netware, SCO Open Server, Sun Solaris, FreeBSD, UnixWare и VMware ESX Server. Контроллер для расчёта XOR-операций использует процессор Intel 80333 на частоте 500 МГц и оснащён 128 Мбайт памяти DDR2 с ECC. Благодаря низкопрофильному форм-фактору и двум разъёмам SFF 8487, каждый из которых обеспечивает четыре порта по одному физическому соединению, RAID 3805 можно устанавливать в компактные серверы 1U, которые имеют слот x4 PCI Express.

Adaptec поддерживает режимы RAID 0, 1, 1E (аналогичен RAID 10), 5, 5EE (с запасным жёстким диском/hot spare), 6, 10, 50, 60 и JBOD, что даёт администраторам определённую гибкость. Что касается функций, то список длинный, включая все привычные функции RAID - онлайновое расширение ёмкости, миграция уровней RAID, быстрая/фоновая инициализация, поддержка "родной" очереди команд (NCQ), разные режимы указания запасных/spare дисков (global/dedicated/pooled), работа с оснастками через SCSI-accessed Fault-Tolerant Enclosure (SAFTE), отложенное время раскрутки шпинделя и т.д. Среди любопытных функций отметим так называемую "copyback hot spare", которая после замены вышедшего из строя винчестера превращает новый жёсткий диск как бы в прежний. Так что метки дисков в оснастке менять не придётся. В таблице ниже мы сравнили функции трёх контроллеров.

В комплект поставки входят контроллер, низкопрофильная заглушка для слота, краткая инструкция по установке на нескольких языках, CD с программным обеспечением, а также два четырёхпортовых кабеля Mini SAS на SATA/SAS стандартов SFF 8487 и SFF 8484. Есть опциональный модуль аккумулятора, который позволяет сохранять в оперативной памяти кэшированные данные после потери питания. Компания решила отказаться от продажи пакета Advanced Data Protection (поддержка RAID 6 и дополнительных функций) в виде опционального обновления. Но резервирование через снимки (snapshot backup) будет доступно только после покупки регистрационного ключа. На RAID-контроллер даётся трёхлетняя гарантия.

На момент публикации Adaptec RAID 3805 стоил $600.


Нажмите на картинку для увеличения.

Atto выпускает два контроллера RAID 5 SAS/SATA с интерфейсом PCI Express: R380, с двумя внешними портами, по четыре накопителя каждый, и R348, с одним портом для четырёх внешних накопителей (SFF 8088) и двумя портами для поддержки до восьми внутренних винчестеров (SFF 8087). Впрочем, вы можете использовать, максимум, восемь портов, считая внутренние и внешние. По информации на сайте Atto, данная функция является уникальной. Мы решили протестировать R348, поскольку данная модель более гибкая, чем R380.

Сначала о недостатках: этот контроллер не поддерживает RAID 6, и он не имеет столь широкой поддержки ОС, как модели Adaptec. Кроме того, на него даётся двухлетняя гарантия, хотя Adaptec, ICP и Ciprico/Raidcore дают три года. Нам сообщили также и о том, что настройки контроллера по умолчанию могут не давать оптимальную производительность, но, к сожалению, уже после того, как мы завершили тесты. Функция под названием "RGSSpeedRead" позволяет выполнять упреждающее чтение с массивов RAID, но её требуется включать через командный интерфейс. Мы обнаружили краткое описание этой функции на последних страницах инструкции. У нас не было времени на повторение всех тестов, но после включения "RGSSpeedRead" скорость чтения действительно возрастает. Обидно, что Atto не включила эту функцию на заводе. Или не посвятила отдельную главу в инструкции оптимизации производительности. R348 имеет интерфейс на Java, который прост в использовании, но не даёт большого числа опций. Мы также не понимаем, почему пользователи должны обязательно зарегистрироваться в Atto перед тем, как что-либо скачивать.

Как и другие контроллеры, Express SAS R348 - низкопрофильная карта PCI Express, использующая восемь линий PCIe. Но в отличие от карт Adaptec и ICP, она оснащена 256 Мбайт памяти DDR2 с поддержкой ECC. Кроме того, используется более мощный процессор XScale IOP 348 на частоте 800 МГц. Он обеспечил хорошие, хотя и не великолепные результаты в тестах ввода/вывода.

Что касается функций, то RAID-контроллер Atto поддерживает все основные режимы RAID: 0, 1, 10, 5, 50. Он может работать в режиме JBOD и даже в RAID 4, который хранит всю информацию избыточности на одном жёстком диске. Но, в отличие от RAID 3, массив RAID 4 создаёт stripe-блоки большего размера, а не однобайтовые блоки, как у RAID 3, что даёт RAID 4 прирост производительности по сравнению с RAID 3. Уровни RAID 6 и 60 пока не поддерживаются, но Atto обещает, что вскоре они будут добавлены. То же самое касается и опционального аккумулятора, который пока не доступен. Поддерживаются ОС Windows Server 2003, Windows 2000, Windows XP и Windows Vista, Max OS X 10.4, а также три разных дистрибутива Linux, но из списка исключены Solaris, FreeBSD и Netware.


Нажмите на картинку для увеличения.
Нажмите на картинку для увеличения.

Версия прошивки: 5.2.0 Build 12415.

Данный продукт технически идентичен Adaptec RAID 3805, в основном по той причине, что ICP Vortex входит в группу компаний Adaptec. Полученный нами образец не поддерживал RAID 6 и функцию "copyback", что было связано с устаревшей прошивкой. Обновление добавило поддержку RAID 6 и "copyback spare". Впрочем, между Adaptec RAID 3805 и ICP 5085BL есть серьёзное отличие: ICP используется более скоростной процессор IOP333 на 800 МГц, а у Adaptec RAID 3805 он работает на частоте 500 МГц. ICP использует 256 Мбайт кэш-памяти DDR2 с поддержкой ECC, а у Adaptec её объём ограничен 128 Мбайт. В результате мы получаем в тестах более высокую производительность в RAID 5. Набор функций, ПО и содержимое комплекта поставки идентичны контроллеру Adaptec.


Нажмите на картинку для увеличения.


Нажмите на картинку для увеличения.

Версия прошивки: 3.0.0.

Наше первое знакомство с контроллерами Raidcore состоялось ещё в 2003 году и оказалось весьма впечатляющим: host-контроллер использует архитектуру под названием Fulcrum, которая позволяет создавать мощные RAID-контроллеры, независимые от аппаратного уровня. В результате Raidcore оказалась одной из первых компаний, кто предложил решения с поддержкой распределения RAID-массивов по нескольким контроллерам . Это стало возможно благодаря специальной логике, которая работает на host-машине. Но есть и недостаток - все расчёты информации избыточности должны выполняться центральным процессорам host-системы, хотя сегодня, с появлением дву- и четырёхядерных процессоров, это уже не такая острая проблема.

Современные решения Raidcore продвигает компания под названием Ciprico. В линейке RC5000 есть четыре разные модели: две низкопрофильные карты с четырьмя и восемью портами, а также две карты с полной высотой на 12 и 16 портов. Цифра "8" как раз и обозначает наличие восьми портов, модели 5100 используют интерфейс PCI-X, а 5200 - PCI Express x1 или x4. Ciprico является единственным производителем, обеспечивающим распределение массива по нескольким контроллерам (controller spanning), в результате чего можно создавать большие RAID-массивы на нескольких (и даже разных) контроллерах Raidcore. Список функций более полный, чем у Adaptec/ICP или Atto, включая роуминг дисков (перевод винчестеров на любой порт любого контроллера), гибкое расположение дисков для замены/spare (dedicated/global/distributed), разделение зеркал (mirror splitting), скрытие массива (array hiding) и т.д.

Raidcore пока не поддерживает массивы с двойной избыточностью RAID 6 или RAID 60, но есть поддержка RAID 0, 1, 10, JBOD, 5, 50, 1n и 10n. Драйверы доступны под все распространённые версии Windows, Red Hat, Suse и Fedora Linux. Novell Netware, Sun Solaris и другие ОС не поддерживаются. Ciprico даёт трёхлетнюю гарантию, да и программное обеспечение управления весьма логичное и мощное. Производительность RC5252-8 оказалось хорошей, хотя она во многом зависит от host-системы. В нашем случае один двуядерный процессор Xeon (ядро Nocona) на частоте 3,6 ГГц оказался хорошим выбором. Впрочем, любой двуядерный Xeon 5200 (Woodcrest или Clovertown) даст ещё более высокую производительность.


Нажмите на картинку для увеличения.


Производитель Adaptec Atto ICP Raidcore
Модель RAID 3805 ExpressSAS R348 RC5252-8
Внутренние разъёмы 2x SFF 8087 2x SFF 8087 2x SFF 8087 2x SFF 8087
Внешние разъёмы Н/Д 1x SFF 8088 Н/Д Н/Д
Общее число портов SAS 8 8 8 8
Кэш-память 128 Мбайт DDR2 ECC 256 Мбайт DDR2 ECC 256 Мбайт DDR2 ECC Нет
Интерфейс PCI Express x4 PCI Express x8 PCI Express x4 PCI Express x4
XOR-движок Intel 80333 500 МГц IOP 348 800 МГц Intel 80333 800 МГц Программный
Миграция уровней RAID Да Да Да
Онлайновое расширение ёмкости Да Да Да Да
Несколько массивов RAID Да Да Да Да
Отложенная раскрутка шпинделя Да Да Да
Гибкая поддержка запасного/ spare винчестера Да Да Да Да
Автоматическое преодоление сбоя (Automatic Failover) Да Да
Аккумулятор для резервного питания Опционально Опционально Опционально Не нужен, кэша нет
Вентилятор Нет Нет Нет Нет
Поддержка ОС

Novell NetWare 6.5
SCO OpenServer
UnixWare
Sun Solaris 10 x86
FreeBSD
Windows Vista, Server 2003, XP, 2000
Mac OS X (10.4.x)
Linux (Fedora, Red Hat and SuSE)
Windows 2000, XP, Server 2003, Vista
Red Hat Enterprise Linux (RHEL)
SUSE Linux Enterprise Server (SLES)
Novell NetWare 6.5
SCO OpenServerUnixWare
Sun Solaris 10 x86
FreeBSD
Windows 2000, XP, Server 2003, Vista
Red Hat Enterprise Linux (RHEL) 4,5
SuSE 9.3, 10.1, 10.2
SUSE Linux Enterprise Server (SLES)
Fedora Core 5,6
Прочее Copyback DVRAID Copyback Controller Spanning
Гарантия 3 года 2 года 3 года 3 года
Рекомендованная розничная цена $575 $1 095 $650

Системное аппаратное обеспечение
Процессоры 2x Intel Xeon (ядро Nocona), 3,6 ГГц, FSB800, 1 Мбайт кэша L2
Платформа Asus NCL-DS (Socket 604), чипсет Intel E7520, BIOS 1005
Память Corsair CM72DD512AR-400 (DDR2-400 ECC, reg.), 2x 512 Мбайт, задержки CL3-3-3-10
Системный жёсткий диск Western Digital Caviar WD1200JB, 120 Гбайт, 7 200 об/мин, кэш 8 Мбайт, UltraATA/100
Контроллеры накопителей Intel 82801EB UltraATA/100 (ICH5)
Promise SATA 300TX4
Promise FastTrak TX4310
Драйвер 2.06.1.310
Сеть Broadcom BCM5721 встроенная 1 Гбит/с
Видеокарта Встроенная ATI RageXL, 8 Мбайт
Тесты
Тесты производительности Atto Diskmark
Производительность ввода/вывода IOMeter 2003.05.10
Fileserver Benchmark
Webserver Benchmark
Database Benchmark
Workstation Benchmark
Системное ПО и драйверы
ОС Microsoft Windows Server 2003 Enterprise Edition,Service Pack 1
Драйвер платформы Intel Chipset Installation Utility 7.0.0.1025
Графический драйвер Графический драйвер Windows по умолчанию

Результаты тестов

Время инициализации RAID

Мы использовали восемь винчестеров Seagate Savvio 10K.2 и определяли время, которое требовалось контроллерам на создание массивов RAID 5 или RAID 6.

Контроллер RAID 5 RAID 6
1 час 12 минут 1 час 2 минуты
Atto 23 минуты Н/Д
57 минут 57 минут
2 часа 42 минуты

Вполне понятно, что контроллеры с самыми быстрыми XOR-процессорами оказались самыми быстрыми. Впрочем, все контроллеры поддерживают фоновую инициализацию, которая снижает производительность, но позволяет сразу же пользоваться массивом.

Пропускная способность пониженного RAID 6

Все четыре контроллера весьма мощные и обеспечивают высокую производительность хранилища и большой набор функций, позволяющих создавать гибкие и высокопроизводительные массивы для серверов среднего и начального уровней. Все контроллеры имеют восемь портов SAS, но к ним можно подключать и винчестеры SATA, включая смешанные варианты SAS/SATA. С помощью расширителей SAS (expander) вы можете подключать большее количество винчестеров. Как мы считаем, четыре рассмотренных контроллера подходят для подключения вплоть до 12 жёстких дисков, поскольку большинство моделей нацелены на внутренние жёсткие диски. Если вы хотите подключать внешние оснастки, то обратите внимание на модели с внешними портами Mini-SAS.

Контроллер ICP 5085BL очень близок к Adaptec RAID 3805, но обеспечивает более высокую производительность благодаря более быстрому XOR-процессору и в два раза большему объёму кэш-памяти. Впрочем, и цена несколько выше: рекомендованная $650 вместо $575 у Adaptec RAID 3805. Обе карты дают впечатляющий набор функций и поставляются с полным набором ПО, который за последние годы немало улучшился. Не будем забывать, что Adaptec - один из самых именитых игроков на рынке профессиональных систем хранения. Atto запрашивает за свой контроллер $1 095, причём за такую цену вы получите меньшее число функций RAID (за исключением поддержки RAID 4), да и вам потребуется выполнить дополнительную настройку контроллера, чтобы он работал быстрее. Ничего страшного, но при настройках по умолчанию выключена функция, ускоряющая производительность чтения. Контроллер даёт хорошие результаты с пониженным массивом RAID 5, поскольку производительность записи не падает, в отличие от других продуктов.

Raidcore поставляет наиболее функциональное программное обеспечение, что является результатом другой архитектуры: она привязана к host-машине и зависит от её производительности. К сожалению, Raidcore пока не поддерживает RAID 6 (собственно, как и Atto), но вы можете распределять массивы RAID по нескольким контроллерам Raidcore, при этом уровень производительности в тестах ввода/вывода на нашем двухпроцессорном сервере Xeon оказался великолепным. Скорости передачи данных были тоже высоки, но другие контроллеры обычно обходят Raidcore в данной дисциплине.

Если вы не против того, чтобы контроллер нагружал host-сервер расчётами XOR и список поддерживаемых ОС вас устраивает, то модель Ciprico/Raidcore обеспечит великолепное соотношение цена/качество. Впрочем, Adaptec даёт более высокую производительность во многих областях, да и цена $575 тоже вполне разумная.

Тесты массивов RAID 6, 5, 1 и 0 с дисками SAS-2 компании Hitachi

Видимо, прошли те времена, когда приличный профессиональный 8-портовый RAID-контроллер стоил весьма внушительных денег. Нынче появились решения для интерфейса Serial Attached SCSI (SAS), которые очень даже привлекательны и по цене, и по функциональности, да и в плане производительности. Об одном из них - этот обзор.

Контроллер LSI MegaRAID SAS 9260-8i

Ранее мы уже писали об интерфейсе SAS второго поколения со скоростью передачи 6 Гбит/с и весьма дешевом 8-портовом HBA-контроллере LSI SAS 9211-8i, предназначенном для организации систем хранения данных начального ценового уровня на базе простейших RAID-массивов SAS и SATA-накопителей. Модель же LSI MegaRAID SAS 9260-8i будет классом повыше - она оснащена более мощным процессором с аппаратным обсчетом массивов уровней 5, 6, 50 и 60 (технология ROC - RAID On Chip), а также ощутимым объемом (512 Мбайт) набортной SDRAM-памяти для эффективного кеширования данных. Этим контроллером также поддерживаются интерфейсы SAS и SATA со скоростью передачи данных 6 Гбит/с, а сам адаптер предназначен для шины PCI Express x8 версии 2.0 (5 Гбит/с на линию), чего теоретически почти достаточно для удовлетворения потребностей 8 высокоскоростных портов SAS. И все это - по розничной цене в районе 500 долларов, то есть лишь на пару сотен дороже бюджетного LSI SAS 9211-8i. Сам производитель, кстати, относит данное решение к серии MegaRAID Value Line, то есть экономичным решениям.




8-портовый SAS-контроллер LSIMegaRAID SAS9260-8i и его процессор SAS2108 с памятью DDR2

Плата LSI SAS 9260-8i имеет низкий профиль (форм-фактор MD2), оснащена двумя внутренними разъемами Mini-SAS 4X (каждый из них позволяет подключать до 4 SAS-дисков напрямую или больше - через порт-мультипликаторы), рассчитана на шину PCI Express x8 2.0 и поддерживает RAID-массивы уровней 0, 1, 5, 6, 10, 50 и 60, динамическую функциональность SAS и мн. др. Контроллер LSI SAS 9260-8i можно устанавливать как в рэковые серверы формата 1U и 2U (серверы классов Mid и High-End), так и в корпуса ATX и Slim-ATX (для рабочих станций). Поддержка RAID производится аппаратно - встроенным процессором LSI SAS2108 (ядро PowerPC на частоте 800 МГц), доукомплектованным 512 Мбайт памяти DDR2 800 МГц с поддержкой ECC. LSI обещает скорость работы процессора с данными до 2,8 Гбайт/с при чтении и до 1,8 Гбайт/с при записи. Среди богатой функциональности адаптера стоит отметить функции Online Capacity Expansion (OCE), Online RAID Level Migration (RLM) (расширение объема и изменение типа массивов «на ходу»), SafeStore Encryption Services и Instant secure erase (шифрование данных на дисках и безопасное удаление данных), поддержку твердотельных накопителей (технология SSD Guard) и мн. др. Опционально доступен батарейный модуль для этого контроллера (с ним максимальная рабочая температура не должна превышать +44,5 градусов Цельсия).

Контроллер LSI SAS 9260-8i: основные технические характеристики

Системный интерфейс PCI Express x8 2.0 (5 ГТ/с), Bus Master DMA
Дисковый интерфейс SAS-2 6 Гбит/с (поддержка протоколов SSP, SMP, STP и SATA)
Число портов SAS 8 (2 разъема x4 Mini-SAS SFF8087), поддержка до 128 накопителей через порт-мультипликаторы
Поддержка RAID уровни 0, 1, 5, 6, 10, 50, 60
Процессор LSI SAS2108 ROC (PowerPC @ 800 МГц)
Встроенная кеш-память 512 Мбайт ECC DDR2 800 МГц
Энергопотребление, не более 24 Вт (питание +3,3 В и +12 В от слота PCIe)
Диапазон температур работы/хранения 0…+60 °С / −45…+105 °С
Форм-фактор, габариты MD2 low-profile, 168×64,4 мм
Значение MTBF >2 млн. ч
Гарантия производителя 3 года

Типичные применения LSI MegaRAID SAS 9260-8i производитель обозначил так: разнообразные видеостанции (видео по запросу, видеонаблюдение, создание и редактирование видео, медицинские изображения), высокопроизводительные вычисления и архивы цифровых данных, многообразные серверы (файловый, веб, почтовый, базы данных). В общем, подавляющее большинство задач, решаемых в малом и среднем бизнесе.

В бело-оранжевой коробке с легкомысленно улыбающимся зубастым дамским личиком на «титуле» (видимо, чтобы лучше завлечь бородатых сисадминов и суровых систембилдеров) находится плата контроллера, брекеты для ее установки в корпуса ATX, Slim-ATX и пр., два 4-дисковых кабеля с разъемами Mini-SAS на одном конце и обычным SATA (без питания) - на другом (для подключения до 8 дисков к контроллеру), а также CD с PDF-документацией и драйверами для многочисленных версий Windows, Linux (SuSE и RedHat), Solaris и VMware.


Комплект поставки коробочной версии контроллера LSI MegaRAID SAS 9260-8i (мини-платка ключа MegaRAID Advanced Services Hardware Key поставляется по отдельному запросу)

Со специальным аппаратным ключом (он поставляется отдельно) для контроллера LSI MegaRAID SAS 9260-8i доступны программные технологии LSI MegaRAID Advanced Services: MegaRAID Recovery, MegaRAID CacheCade, MegaRAID FastPath, LSI SafeStore Encryption Services (их рассмотрение выходит за рамки данной статьи). В частности, в плане повышения производительности массива традиционных дисков (HDD) при помощи добавленного в систему твердотельного накопителя (SSD) будет полезна технология MegaRAID CacheCade, при помощи которой SSD выступает кешем второго уровня для массива HDD (аналог гибридного решения для HDD), в отдельных случаях обеспечивая повышение производительности дисковой подсистемы до 50 раз. Интерес представляет также решение MegaRAID FastPath, при помощи которого уменьшаются задержка обработки процессором SAS2108 операций ввода-вывода (за счет отключения оптимизации под НЖМД), что позволяет ускорить работу массива из нескольких твердотельных накопителей (SSD), подключенных напрямую к портам SAS 9260-8i.

Операции по конфигурированию, настройке и обслуживанию контроллера и его массивов удобнее производить в фирменном менеджере в среде операционной системы (настройки в меню BIOS Setup самого контроллера недостаточно богаты - доступны только базовые функции). В частности, в менеджере за несколько кликов мышкой можно организовать любой массив и установить политики его работы (кеширование и пр.) - см. скриншоты.




Примеры скриншотов Windows-менеджера по конфигурированию массивов RAID уровней 5 (вверху) и 1 (внизу).

Тестирование

Для знакомства с базовой производительностью LSI MegaRAID SAS 9260-8i (без ключа MegaRAID Advanced Services Hardware Key и сопутствующих технологий) мы использовали пять высокопроизводительных SAS-накопителей со скоростью вращения шпинделя 15 тыс. об/мин и поддержкой интерфейса SAS-2 (6 Гбит/с) - Hitachi Ultrastar 15K600 HUS156030VLS600 емкостью по 300 Гбайт.


Жесткий диск Hitachi Ultrastar 15K600 без верхней крышки

Это позволит нам протестировать все базовые уровни массивов - RAID 6, 5, 10, 0 и 1, причем не только при минимальном для каждого из них числе дисков, но и «на вырост», то есть при добавлении диска во второй из 4-канальных SAS-портов чипа ROC. Отметим, что у героя этой статьи есть упрощенный аналог - 4-портовый контроллер LSI MegaRAID SAS 9260-4i на той же элементной базе. Поэтому наши тесты 4-дисковых массивов с тем же успехом применимы и к нему.

Максимальная скорость последовательного чтения/записи полезных данных для Hitachi HUS156030VLS600 составляет около 200 Мбайт/с (см. график). Среднее время случайного доступа при чтении (по спецификациям) - 5,4 мс. Встроенный буфер - 64 Мбайт.


График скорости последовательного чтения/записи диска Hitachi Ultrastar 15K600 HUS156030VLS600

Тестовая система была основана на процессоре Intel Xeon 3120, материнской плате с чипсетом Intel P45 и 2 Гбайт памяти DDR2-800. SAS-контроллер устанавливался в слот PCI Express x16 v2.0. Испытания проводились под управлением операционных систем Windows XP SP3 Professional и Windows 7 Ultimate SP1 x86 (чистые американские версии), поскольку их серверные аналоги (Windows 2003 и 2008 соответственно) не позволяют работать некоторым из использованных нами бенчмарков и скриптов. В качестве тестов использовались программы AIDA64, ATTO Disk Benchmark 2.46, Intel IOmeter 2006, Intel NAS Performance Toolkit 1.7.1, C’T H2BenchW 4.13/4.16, HD Tach RW 3.0.4.0 и за компанию Futuremark PCMark Vantage и PCMark05. Тесты проводились как на неразмеченных томах (IOmeter, H2BenchW, AIDA64), так и на отформатированных разделах. В последнем случае (для NASPT и PCMark) результаты снимались как для физического начала массива, так и для его середины (тома массивов максимально доступной емкости разбивались на два равновеликих логических раздела). Это позволяет нам более адекватно оценивать производительность решений, поскольку самые быстрые начальные участки томов, на которых проводятся файловые бенчмарки большинством обозревателей, зачастую не отражают ситуации на остальных участках диска, которые в реальной работе также могут использоваться весьма активно.

Все тесты проводились пятикратно и результаты усреднялись. Подробнее нашу обновленную методику оценки профессиональных дисковых решений мы рассмотрим в отдельной статье.

Остается добавить, что при данном тестировании мы использовали версию прошивки контроллера 12.12.0-0036 и драйверы версии 4.32.0.32. Кеширование записи и чтения для всех массивов и дисков было активировано. Возможно, использование более современной прошивки и драйверов уберегло нас от странностей, замеченных в результатах ранних тестов такого же контроллера . В нашем случае подобных казусов не наблюдалось. Впрочем, и весьма сомнительный по достоверности результатов скрипт FC-Test 1.0 (который в определенных случаях тем же коллегам «хочется назвать разбродом, шатанием и непредсказуемостью») мы тоже в нашем пакете не используем, поскольку ранее многократно замечали его несостоятельность на некоторых файловых паттернах (в частности, наборах множества мелких, менее 100 Кбайт, файлов).

На диаграммах ниже приведены результаты для 8 конфигураций массивов:

  1. RAID 0 из 5 дисков;
  2. RAID 0 из 4 дисков;
  3. RAID 5 из 5 дисков;
  4. RAID 5 из 4 дисков;
  5. RAID 6 из 5 дисков;
  6. RAID 6 из 4 дисков;
  7. RAID 1 из 4 дисков;
  8. RAID 1 из 2 дисков.

Под массивом RAID 1 из четырех дисков (см. скриншот выше) в компании LSI, очевидно, понимают массив «страйп+зеркало», обычно обозначаемый как RAID 10 (это подтверждают и результаты тестов).

Результаты тестирования

Чтобы не перегружать веб-страницу обзора бесчисленным набором диаграмм, порой малоинформативных и утомляющих (чем нередко грешат некоторые «оголтелые коллеги»:)), мы свели детальные результаты некоторых тестов в таблицу . Желающие проанализировать тонкости полученных нами результатов (например, выяснить поведение фигурантов в наиболее критичных для себя задачах) могут сделать это самостоятельно. Мы же сделаем упор на наиболее важных и ключевых результатах тестов, а также на усредненных показателях.

Сначала взглянем на результаты «чисто физических» тестов.

Среднее время случайного доступа к данным при чтении на единичном диске Hitachi Ultrastar 15K600 HUS156030VLS600 составляет 5,5 мс. Однако при организации их в массивы этот показатель немного меняется: уменьшается (благодаря эффективному кешированию в контроллере LSI SAS9260) для «зеркальных» массивов и увеличивается - для всех остальных. Наибольший рост (примерно на 6%) наблюдается для массивов уровня 6, поскольку при этом контроллеру приходится одновременно обращаться к наибольшему числу дисков (к трем для RAID 6, к двум - для RAID 5 и к одному для RAID 0, поскольку обращение в этом тесте происходит блоками размером всего 512 байт, что существенно меньше размера блоков чередования массивов).

Гораздо интереснее ситуация со случайным доступом к массивам при записи (блоками по 512 байт). Для единичного диска этот параметр равен около 2,9 мс (без кеширования в хост-контроллере), однако в массивах на контроллере LSI SAS9260 мы наблюдаем существенное уменьшение этого показателя - благодаря хорошему кешированию записи в SDRAM-буфере контроллера объемом 512 Мбайт. Интересно, что наиболее кардинальный эффект получается для массивов RAID 0 (время случайного доступа при записи падает почти на порядок по сравнению с одиночным накопителем)! Это несомненно должно благотворно отразиться на быстродействии таких массивов в ряде серверных задач. В то же время, и на массивах с XOR-вычислениями (то есть высокой нагрузкой на процессор SAS2108) случайные обращения на записи не приводят к явному проседанию быстродействия - снова благодаря мощному кешу контроллера. Закнонмерно, что RAID 6 здесь чуть медленнее, чем RAID 5, однако разница между ними, по сути, несущественна. Несколько удивило в этом тесте поведение одиночного «зеркала», показавшего самый медленный случайный доступ при записи (возможно, это «фича» микрокода данного контроллера).

Графики скорости линейного (последовательного) чтения и записи (крупными блоками) для всех массивов не имеют каких-либо особенностей (для чтения и записи они практически идентичны при условии задействования кеширования записи контроллера) и все они масштабируются согласно количеству дисков, параллельно участвующих в «полезном» процессе. То есть для пятидискового RAID 0 дисков скорость «упятеряется» относительно одиночного диска (достигая показателя в 1 Гбайт/с!), для пятидискового RAID 5 она «учетверяется», для RAID 6 - «утрояется» (утраивается, конечно же:)), для RAID 1 из четырех дисков - удваивается (никаких «у2яица»! :)), а для простого зеркала - дублирует графики одиночного диска. Эта закономерность наглядно видна, в частности, по показателям максимальной скорости чтения и записи реальных крупных (256 Мбайт) файлов большими блоками (от 256 Кбайт до 2 Мбайт), что мы проиллюстрируем диаграммой теста ATTO Disk Benchmark 2.46 (результаты этого теста для Windows 7 и XP практически идентичны).

Здесь из общей картины неожиданно выпал лишь случай чтения файлов на массиве RAID 6 из 5 дисков (результаты многократно перепроверены). Впрочем, для чтения блоками 64 Кбайт скорость данного массива набирает положенные ему 600 Мбайт/с. Так что спишем данный факт на «фичу» текущей прошивки. Отметим также, что при записи реальных файлов скорость чуть повыше благодаря кешированию в большом буфере контроллера, причем разница с чтением тем ощутимее, чем меньше реальная линейная скорость массива.

Что же касается скорости интерфейса, измеряемой обычно по показателям записи и чтения буфера (многократные обращения по одному и тому же адресу дискового тома), то здесь мы вынуждены констатировать, что почти для всех массивов она оказалась одинакова благодаря включению кеша контроллера для этих массивов (см. таблицу). Так, показатели при записи для всех участников нашего теста составили примерно 2430 Мбайт/с. Заметим, что шина PCI Express x8 2.0 теоретически дает скорость 40 Гбит/с или 5 Гбайт/с, однако по полезным данным теоретический предел пониже - 4 Гбайт/с, и значит, в нашем случае контроллер действительно работал по версии 2.0 шины PCIe. Таким образом, измеренные нами 2,4 Гбайт/с - это, очевидно, реальная пропускная способность набортной памяти контроллера (память DDR2-800 при 32-битной шине данных, что видно из конфигурации ECC-чипов на плате, теоретически дает до 3,2 Гбайт/с). При чтении же массивов кеширование не столь «всеобъемлюще», как при записи, поэтому и измеряемая в утилитах скорость «интерфейса», как правило, ниже скорости чтения кеш-памяти контроллера (типичные 2,1 Гбайт/с для массивов уровней 5 и 6), и в некоторых случаях она «падает» до скорости чтения буфера самих жестких дисков (около 400 Мбайт/с для одиночного винчестера, см. график выше), помноженной на число «последовательных» дисков в массиве (это как раз случаи RAID 0 и 1 из наших результатов).

Что ж, с «физикой» мы в первом приближении разобрались, пора переходить к «лирике», то есть к тестам «реальных» пацанов приложений. К слову, интересно будет выяснить, масштабируется ли производительность массивов при выполнении комплексных пользовательских задач так же линейно, как она масштабируется при чтении и записи крупных файлов (см. диаграмму теста ATTO чуть выше). Пытливый читатель, надеюсь, уже смог предугадать ответ на этот вопрос.

В качестве «салата» к нашей «лирической» части трапезы подадим десктопные по своей природе дисковые тесты из пакетов PCMark Vantage и PCMark05 (под Windows 7 и XP соответственно), а также похожий на них «трековый» тест приложений из пакета H2BenchW 4.13 авторитетного немецкого журнала C’T. Да, эти тесты исходно создавались для оценки жестких дисков настольных ПК и недорогих рабочих станций. Они эмулируют выполнение на дисках типичных задач продвинутого персонального компьютера - работу с видео, аудио, «фотошопом», антивирусом, играми, своп-файлом, установкой приложений, копированием и записью файлов и др. Поэтому и их результаты в контексте данной статьи не стоит воспринимать как истину в последней инстанции - все-таки на многодисковых массивах чаще выполняются иные задачи. Тем не менее, в свете того, что сам производитель позиционирует данный RAID-контроллер, в том числе, для относительно недорогих решений, подобный класс тестовых задач вполне способен характеризовать некоторую долю приложений, которые в реальности будут выполняться на таких массивах (та же работа с видео, профессиональная обработка графики, свопирование ОС и ресурсоемких приложений, копирование файлов, анитивирус и пр.). Поэтому и значение этих трех комплексных бенчмарков в нашем общем пакете не стоит недооценивать.

В популярном PCMark Vantage в среднем (см. диаграмму) мы наблюдаем очень примечательный факт - производительность данного многодискового решения почти не зависит от типа используемого массива! К слову, в определенных пределах это вывод справедлив и для всех отдельных тестовых треков (типов задач), входящих в состав пакетов PCMark Vantage и PCMark05 (детали см. в таблице). Это может означать либо то, что алгоритмы прошивки контроллера (с кешем и дисками) почти не учитывают специфику работы приложений подобного типа, либо то, что основная часть данных задач выполняется в кеш-памяти самого контроллера (а скорее всего мы наблюдаем комбинацию этих двух факторов). Впрочем, для последнего случая (то есть выполнения треков в большой мере в кеше RAID-коннтроллера) средняя производительность решений оказывается не такой уж высокой - сравните эти данные с результатами тестов некоторых «десктопных» («чипсетаных») 4-дисковых массивов RAID 0 и 5 и недорогих одиночных SSD на шине SATA 3 Гбит/с (см. обзор). Если по сравнению с простым «чипсетным» 4-дисковым RAID 0 (причем на вдвое более медленных винчестерах, чем примененные здесь Hitachi Ultrastar 15K600) массивы на LSI SAS9260 быстрее в тестах PCMark менее чем вдвое, то относительно даже не самого быстрого «бюджетного» одиночного SSD все они однозначно проигрывают! Результаты дискового теста PCMark05 дают аналогичную картину (см. табл .; рисовать отдельную диаграмму для них смысла нет).

Похожую картину (с отдельными оговорками) для массивов на LSI SAS9260 можно наблюдать в еще одном «трековом» бенчмарке приложений - C’T H2BenchW 4.13. Здесь лишь два наиболее медленных (по строению) массива (RAID 6 из 4 дисков и простое «зеркало») заметно отстают от всех остальных массивов, производительность которых, очевидно, достигает того «достаточного» уровня, когда она упирается уже не в дисковую подсистему, а в эффективность работы процессора SAS2108 c кеш-памятью контроллера при данных комплексных последовательностях обращений. А радовать нас в этом контексте может то, что производительность массивов на базе LSI SAS9260 в задачах такого класса почти не зависит от типа используемого массива (RAID 0, 5, 6 или 10), что позволяет использовать более надежные решения без ущерба для итоговой производительности.

Впрочем, «не все коту Масленица» - если мы изменим тесты и проверим работу массивов с реальными файлами на файловой системе NTFS, то картина кардинально изменится. Так, в тесте Intel NASPT 1.7, многие из «предустановленных» сценариев которого имеют достаточно прямое отношение к задачам, типичным для компьютеров, оснащенных контроллером LSI MegaRAID SAS9260-8i, диспозиция массивов похожа на ту, что мы наблюдали в тесте ATTO при чтении и записи крупных файлов - быстродействие пропорционально нарастает по мере роста «линейной» скорости массивов.

На этой диаграмме мы приводим усредненный по всем тестам и паттернам NASPT показатель, тогда как в таблице можно видеть детальные результаты. Подчеркну, что NASPT прогонялся нами как под Windows XP (так обычно поступают многочисленные обозреватели), так и под Windows 7 (что в силу определенных особенностей этого теста делается реже). Дело в том, что Seven (и ее «старший братец» Windows 2008 Server) используют более агрессивные алгоритмы собственного кеширования при работе с файлами, нежели XP. Кроме того, копирование крупных файлов в «Семерке» происходит преимущественно блоками по 1 Мбайт (XP, как правило, оперирует блоками по 64 Кбайт). Это приводит к тому, что результаты «файлового» теста Intel NASPT существенно различаются в Windows XP и Windows 7 - в последней они намного выше, порой более чем вдвое! К слову, мы сравнили результаты NASPT (и других тестов нашего пакета) под Windows 7 с 1 Гбайт и 2 Гбайт установленной системной памяти (есть информация, что при больших объемах системной памяти кеширование дисковых операций в Windows 7 усиливается и результаты NASPT становятся еще выше), однако в пределах погрешности измерений мы не нашли никакой разницы.

Споры о том, под какой ОС (в плане политик кеширования и пр.) «лучше» тестировать диски и RAID-контроллеры, мы оставляем для ветки обсуждений этой статьи. Мы же считаем, что тестировать накопители и решения на их основе надо в условиях, максимально приближенных к реальным ситуациям их эксплуатации. Именно поэтому равную ценность, на наш взгляд, имеют результаты, полученные нами для обеих ОС.

Но вернемся к диаграмме усредненной производительности в NASPT. Как видим, разница между самым быстрым и самым медленным из протестированных нами массивов здесь составляет в среднем чуть менее трех раз. Это, конечно, не пятикратный разрыв, как при чтении и записи крупны файлов, но тоже весьма ощутимо. Массивы расположились фактически пропорционально своей линейной скорости, и это не может не радовать: значит, процессор LSI SAS2108 достаточно шустро обрабатывает данные, почти не создавая узких мест при активной работе массивов уровней 5 и 6.

Справедливости ради нужно отметить, что и в NASPT есть паттерны (2 из 12), в которых наблюдается та же картина, что и в PCMark c H2BenchW, а именно что производительность всех протестированных массивов практически одинакова! Это Office Productivity и Dir Copy to NAS (см. табл.). Особенно явно это под Windows 7, хотя и для Windows XP тенденция «сближения» налицо (по сравнению с другими паттернами). Впрочем, и в PCMark c H2BenchW есть паттерны, где налицо рост производительности массивов пропорционально их линейной скорости. Так что все не так просто и однозначно, как может некоторым хотелось бы.

Поначалу я хотел обсудить диаграмму с общими показателями быстродействия массивов, усредненными по всем тестам приложений (PCMark+H2BenchW+NASPT+ATTO), то есть вот эту:

Однако обсуждать здесь особо нечего: мы видим, что поведение массивов на контроллере LSI SAS9260 в тестах, эмулирующих работу тех или иных приложений, может кардинально различаться в зависимости от применяемых сценариев. Поэтому выводы о пользе той или иной конфигурации лучше делать, исходя из того, какие именно задачи вы собираетесь при этом выполнять. И в этом нам может заметно помочь еще один профессиональный тест - синтетические паттерны для IOmeter, эмулирующие ту или иную нагрузку на систему хранения данных.

Тесты в IOmeter

В данном случае мы опустим обсуждение многочисленных паттернов, тщательно измеряющих скорость работы в зависимости от размера блока обращения, процента операций записи, процента случайных обращений и пр. Это, по сути, чистая синтетика, дающая мало полезной практической информации и представляющая интерес скорее чисто теоретически. Ведь основные практические моменты касательно «физики» мы уже выяснили выше. Нам важнее сосредоточиться на паттернах, эмулирующих реальную работу - серверов различного типа, а также операций с файлами.

Для эмуляции серверов типа File Server, Web Server и DataBase (сервер базы данных) мы воспользовались одноименными и хорошо известными паттернами, предложенными в свое время Intel и StorageReview.com. Для всех случаев мы протестировали массивы при глубине очереди команд (QD) от 1 до 256 с шагом 2.

В паттерне «База данных», использующих случайные обращения к диску блоками по 8 Кбайт в пределах всего объема массива, можно наблюдать существенное преимущество массивов без контроля четности (то есть RAID 0 и 1) при глубине очереди команд от 4 и выше, тогда как все массивы с контролем четности (RAID 5 и 6) демонстрируют очень близкое быстродействие (несмотря на двукратное различие между ними в скорости линейных обращений). Ситуация объясняется просто: все массивы с контролем четности показали в тестах на среднее время случайного доступа близкие значения (см. диаграмму выше), а именно этот параметр в основном определяет производительность в данном тесте. Интересно, что быстродействие всех массивов нарастает практически линейно с ростом глубины очереди команд вплоть до 128, и лишь при QD=256 для некоторых случаев можно видеть намек на насыщение. Максимальная производительность массивов с контролем четности при QD=256 составила около 1100 IOps (операций в секунду), то есть на обработку одной порции данных в 8 Кбайт процессор LSI SAS2108 тратит менее 1 мс (около 10 млн однобайтовых XOR-операций в секунду для RAID 6; разумеется, процессор при этом выполняет параллельно и другие задачи по вводу-выводу данных и работе с кеш-памятью).

В паттерне файлового сервера, использующего блоки разного размера при случайных обращениях чтения и записи к массиву в пределах всего его объема, мы наблюдаем похожую на DataBase картину с той разницей, что здесь пятидисковые массивы с контролем четности (RAID 5 и 6) заметно обходят по скорости свои 4-дисковые аналоги и демонстрируют при этом почти идентичную производительность (около 1200 IOps при QD=256)! Видимо, добавление пятого диска на второй из двух 4-канальных SAS-портов контроллера каким-то образом оптимизирует вычислительные нагрузки на процессор (за счет операций ввода-вывода?). Возможно, стоит сравнить по скорости 4-дисковые массивы, когда накопители попарно подключены к разным Mini-SAS-разъемам контроллера, чтобы выявить оптимальную конфигурацию для организации массивов на LSI SAS9260, но это уже задача для другой статьи.

В паттерне веб-сервера, где, по замыслу его создателей, отсутствуют как класс операции записи на диск (а значит, и вычисление XOR-функций на запись), картина становится еще интереснее. Дело в том, что все три пятидисковых массива из нашего набора (RAID 0, 5 и 6) показывают здесь идентичное быстродействие, несмотря на заметную разницу между ними по скорости линейного чтения и вычислений по контролю четности! К слову, эти же три массива, но из 4 дисков, также идентичны по скорости друг другу! И лишь RAID 1 (и 10) выпадает из общей картины. Почему так происходит, судить сложно. Возможно, контроллер имеет очень эффективные алгоритмы выборки «удачных дисков» (то есть тех из пяти или четырех дисков, с которых первыми приходят нужные данные), что в случае RAID 5 и 6 повышает вероятность более раннего поступления данных с пластин, заранее подготавливая процессор для нужных вычислений (вспомним про глубокую очередь команд и большой буфер DDR2-800). А это в итоге может скомпенсировать задержку, связанную с XOR-вычислениями и уравнивает их в «шансах» с «простым» RAID 0. В любом случае, контроллер LSI SAS9260 можно только похвалить за экстремально высокие результаты (около 1700 IOps для 5-дисковых массивов при QD=256) в паттерне Web Server для массивов с контролем четности. К сожалению, ложкой дегтя стала весьма низкая производительность двухдискового «зеркала» во всех этих серверных паттернах.

Паттерну Web Server вторит наш собственный паттерн, эмулирующий случайное чтение небольших (64 Кбайт) файлов в пределах всего пространства массива.

Снова результаты объединились в группы - все 5-дисковые массивы идентичны друг другу по скорости и лидируют в нашем «забеге», 4-дисковые RAID 0, 5 и 6 тоже не отличить друг от друга по производительности, и лишь «зеркалки» выпадают из общей массы (к слову, 4 дисковая «зеркалка», то есть RAID 10 оказывается быстрее всех остальных 4-дисковых массивов - видимо, за счет того же самого алгоритма «выбора удачного диска»). Подчеркнем, что данные закономерности справедливы лишь для большой глубины очереди команд, тогда как при малой очереди (QD=1-2) ситуация и лидеры могут быть совсем иными.

Все меняется при работе серверов с крупными файлами. В условиях современного «потяжелевшего» контента и новых «оптимизированных» ОС типа Windows 7, 2008 Server т.п. работа с мегабайтными файлами и блоками данных по 1 Мбайт приобретает все более важное значение. В этой ситуации наш новый паттерн, эмулирующий случайное чтение 1-мегабайтных файлов в пределах всего диска (детали новых паттернов будут описаны в отдельной статье по методике), оказывается как нельзя кстати, чтобы более полно оценить серверный потенциал контроллера LSI SAS9260.

Как видим, 4-дисковое «зеркало» здесь уже никому не оставляет надежд на лидерство, явно доминируя при любой очереди команд. Его производительность также сначала растет линейно с ростом глубины очереди команд, однако при QD=16 для RAID 1 она выходит на насыщение (скорость около 200 Мбайт/с). Чуть «позже» (при QD=32) «насыщение» производительности наступает у более медленных в этом тесте массивов, среди которых «серебро» и «бронзу» приходится отдать RAID 0, а массивы с контролем четности оказываются в аутсайдерах, уступив даже прежде не блиставшему RAID 1 из двух дисков, который оказывается неожиданно хорош. Это приводит нас к выводу, что даже при чтении вычислительная XOR-нагрузка на процессор LSI SAS2108 при работе с крупными файлами и блоками (расположенными случайным образом) оказывается для него весьма обременительна, а для RAID 6, где она фактически удваивается, порой даже непомерна - производительность решений едва превышает 100 Мбайт/с, то есть в 6-8 раз ниже, чем при линейном чтении! «Избыточный» RAID 10 здесь применять явно выгоднее.

При случайной записи мелких файлов картина снова разительно отличается от тех, что мы видели ранее.

Дело в том, что здесь уже производительность массивов практически не зависит от глубины очереди команд (очевидно, сказывается огромный кеш контроллера LSI SAS9260 и немаленькие кеши самих винчестеров), зато кардинально меняется с типом массива! В безоговорочных лидерах тут «простенькие» для процессора RAID 0, а «бронза» с более чем двукратным проигрышем лидеру - у RAID 10. Все массивы с контролем четности образовали очень тесную единую группу с двухдисковой зеркалкой (детали по ним приведены на отдельной диаграмме под основной), троекратно проигрывая лидерам. Да, это, безусловно, тяжелая нагрузка на процессор контроллера. Однако такого «провала» я, откровенно говоря, от SAS2108 не ожидал. Порой даже софтовый RAID 5 на «чипсетом» SATA-контроллере (с кешированием средствами Windows и обсчетом при помощи центрального процессора ПК) способен работать шустрее… Впрочем, «свои» 440-500 IOps контроллер при этом все-таки выдает стабильно - сравните это с диаграммой по среднему времени доступа при записи в начале раздела результатов.

Переход на случайную запись крупных файлов по 1 Мбайт приводит к росту абсолютных показателей скорости (для RAID 0 - почти до значений при случайном чтении таких файлов, то есть 180-190 Мбайт/с), однако общая картина почти не меняется - массивы с контролем четности в разы медленнее RAID 0.

Любопытна картина для RAID 10 - его производительность падает с ростом глубины очереди команд, хотя и не сильно. Для остальных массивов такого эффекта нет. Двухдискове «зеркало» здесь снова выглядит скромно.

Теперь посмотрим на паттерны, в которых файлы в равных количествах читаются и пишутся на диск. Такие нагрузки характерны, в частности, для некоторых видеосерверов или при активном копировании/дуплицировании/резервировании файлов в пределах одного массива, а также в случае дефрагментации.

Сначала - файлы по 64 Кбайт случайным образом по всему массиву.

Здесь очевидно некоторое сходство с результатами паттерна DataBase, хотя абслютные скорости у массивов раза в три повыше, да и при QD=256 уже заметно некоторое насыщение производительности. Больший (по сравнению с паттерном DataBase) процент операций записи в этом случае приводит к тому, что массивы с контролем четности и двухдисковое «зеркало» становятся явными аутсайдерами, существенно уступая по скорости массивам RAID 0 и 10.

При переходе на файлы по 1 Мбайт данная закономерность в целом сохраняется, хотя абсолютные скорости примерно утраиваются, а RAID 10 становится таким же быстрым, как 4-дисковый «страйп», что не может не радовать.

Последним паттерном в этой статье будет случай последовательного (в противовес случайным) чтения и записи крупных файлов.

И тут уже многим массивам удается разогнаться до весьма приличных скоростей в районе 300 Мбайт/с. И хотя более чем двукратный разрыв между лидером (RAID 0) и аутсайдером (двухдисковый RAID 1) сохраняется (заметим, что при линейном чтении ИЛИ записи этот разрыв пятикратен!), вошедший в тройку лидеров RAID 5, да и подтянувшиеся остальные XOR-массивы не могут не обнадеживать. Ведь если судить по тому перечню применений данного контроллера, который приводит сама LSI (см. начало статьи), многие целевые задачи будут использовать именно данный характер обращений к массивам. И это определенно стоит учитывать.

В заключение приведу итоговую диаграмму, в которой усреднены показатели всех озвученных выше паттернов теста IOmeter (геометрически по всем паттернам и очередям команд, без весовых коэффициентов). Любопытно, что если усреднение данных результатов внутри каждого паттерна проводить арифметически с весовыми коэффициентами 0,8, 0,6, 0,4 и 0,2 для очередей команд 32, 64, 128 и 256 соответственно (что условно учитывает падение доли операций с высокой глубиной очереди команд в общей работе накопителей), то итоговый (по всем паттернам) нормированный индекс быстродействия массивов в пределах 1% совпадет со средним геометрическим.

Итак, средняя «температура по больнице» в наших паттернах для теста IOmeter показывает, что от «физики с матемачихой» никуда не уйти - однозначно лидируют RAID 0 и 10. Для массивов с контролем четности чуда не произошло - процессор LSI SAS2108 хоть и демонстрирует в некоторых случаях приличную производительность, в целом не может «дотянуть» такие массивы до уровня простого «страйпа». При этом интересно, что 5-дисковые конфигурации явно прибавляют по сравнению с 4 дисковыми. В частности, 5-дисквый RAID 6 однозначно быстрее 4-дискового RAID 5, хотя по «физике» (времени случайного доступа и скорости линейного доступа) они фактически идентичны. Также огорчило двухдисковое «зеркало» (в среднем оно равноценно 4-дисковому RAID 6, хотя для зеркала двух XOR-вычислений на каждый бит данных не требуется). Впрочем, простое «зеркало» - это очевидно не целевой массив для достаточно мощного 8-портового SAS-контроллера с большим кешем и мощным процессором «на борту». :)

Ценовая информация

8-портовый SAS-контроллер LSI MegaRAID SAS 9260-8i с полным комплектом предлагается по цене в районе 500 долларов, что можно считать достаточно привлекательным. Его упрощенный 4-портовый аналог еще дешевле. Более точная текущая средняя розничная цена устройства в Москве, актуальная на момент чтения вами данной статьи:

LSI SAS 9260-8i LSI SAS 9260-4i
$571() $386()

Заключение

Суммируя сказано выше, можно заключить, что единых рекомендаций «для всех» по 8-портовому контроллеру LSI MegaRAID SAS9260-8i мы давать не рискнем. О необходимости его использования и конфигурирования тех или иных массивов с его помощью каждый должен делать выводы самостоятельно - строго исходя из того класса задач, которые предполагается при этом запускать. Дело в том, что в одних случаях (на одних задачах) этот недорогой «мегамонстр» способен показать выдающуюся производительность даже на массивах с двойным контролем четности (RAID 6 и 60), однако в других ситуациях скорость его RAID 5 и 6 явно оставляет желать лучшего. И спасением (почти универсальным) станет лишь массив RAID 10, который почти с тем же успехом можно организовать и на более дешевых контроллерах. Впрочем, нередко именно благодаря процессору и кеш-памяти SAS9260-8i массив RAID 10 ведет себя здесь ничуть не медленнее «страйпа» из того же числа дисков, обеспечивая при этом высокую надежность решения. А вот чего однозначно стоит избегать с SAS9260-8i, так это двухдисковой «зеркалки» и 4-дисковых RAID 6 и 5 - для данного контроллера это очевидно неоптимальные конфигурации.

Благодарим компанию Hitachi Global Storage Technologies
за предоставленные для тестов жесткие диски.