Рнк-вирусы как причина развития рака - вирусный канцерогенез. Вирусная рнк Рнк со знаком выполняет у вирусов функцию

Семейство Пикорнавирусы (Picornaviridae) состоит из 8 родов:

Энтеровирусы (полиомиелит)

Риновирусы (ОРВИ)

Афтовирусы (ящур)

Гепатовирусы (гепатит А)

Это семейство относится к безоболочечным вирусам, содержащих однонитевую плюс РНК. Диаметр вируса около 30нм, вирион состоит из икосаэдрического капсида, окружающего однонитевую плюс РНК с протеином VPg. Капсид состоит из 12 пятиугольников (пентамеров), каждый из которых в свою очередь состоит из 5 белковых субъединиц-протомеров: VP1, VP2, VP3, VP4.

Семейство Реовирусы (Reoviridae) содержит 4 рода:

Ортовирусы (желудочно-кишечные и респираторные инфекции)

Арбовирусы (арбовирусные инфекции: вирус Кемерово переносится клещами, вирус синего языка овец переносится мокрицами)

Колтивирусы (вирус колорадской клещевой лихорадки)

Ротавирусы (диареи)

Вирион реовирусов имеет сферическую форму (диаметр 70-85нм), двухслойный капсид икосаэдрического типа, оболочки нет. Геном представлен двунитевой фрагментированной (10-12 сегментов) линейной РНК. Внутренний капсид и геномная РНК составляют сердцевину вириона. Внутренний капсид реовирусов содержит систему транскрипции: белки лямбда -1, лямбда -3, мю -2. От сердцевины отходят шипы, представленные белком лямбда – 2. У ротавирусов внутренний капсид включает белки VP1, VP2, VP3, VP6. Наружный капсид реовирусов состоит из белков сигма – 1, сигма – 3, мю – 1с, а также белков лямбда -2, выступаюших в виде шипов. Белок сигма -1 является гемагглютинином и прикрепительным белком, белок мю -1с обладает способностью заражать клетки кишечника и впоследствии поражать ЦНС.

Семейство Буньявирусы (Bunyaviridae) включает 5 родов:

Буньявирусы (калифорнийский энцефалит, энцефалит Джеймстаун- каньон, энцефалит Ла-Кросс, лихорадки Тягиня, Инко, Гуароа – переносчиком вирусов являются комары, заболеваемость эндемична в 20 штатах США)

Флебовирусы (москитная лихорадка или лихорадка паппатачи). Резервуаром и переносчиком вируса являются самки москитов. Заболевание встречается в Европе (Средиземноморье), Азии (Иран, Пакистан), в Северной Африке, Италии, Португалии. Вспышки имели место в Закавказье, Крыму, Молдавии и Средней Азии.

Нейровирусы (геморрагическая лихорадка Крым-Конго, основным резервуаром вируса в природе являются многие виды пастбищных клещей, заражение происходит через присасывание клещей. В России это заболевание встречается на территории Краснодарского, Ставропольского краев, Астраханской, Волгоградской и Ростовской областей, республик Дагестан, Калмыкия и Карачаево-Черкесии.

Хантавирусы (ГЛПС-геморрагическая лихорадка с почечным синдромом)

Тосповирусы непатогенны для человека и поражают растения

Вирионы имеют овальную или сферическую форму, диаметр 80-120нм. Это сложные РНК-геномные вирусы, содержащие три внутренних нуклеокапсида со спиральным типом симметрии. Каждый нуклеокапсид состоит из нуклеокапсидного белка N, одноцепочечной минус РНК и фермента транскриптазы. Три сегмента РНК, связанные с нуклеокапсидом, обозначают по размерам: L (long) – большой, M (medium) – средний, S (short) – малый. Сердцевина вириона окружена липопротеидной оболочкой, на поверхности которой находятся шипы – гликопротеины G1 и G2, которые кодируются М-сегментом РНК. ш80-

Семейство Тогавирусы (Togaviridae) состоит из 4 родов, 2 из которых играют роль в патологии человека:

Альфавирус (вирусы, передаваемые членистоногими, вызывают у человека заболевания, сопровождающиеся лихорадкой, высыпаниями на коже, развитием энцефалита и артрита, в Приморском крае – вирус лихорадки леса Семлики)

Рубивирус (вирус краснухи)

Их геном состоит из линейной однонитчатой плюс-РНК, окруженной капсидом (С-белок) с кубическим типом симметрии и состоящим из 32 капсомеров. Нуклеокапсид окружен наружной двухслойной липопротеидной оболочкой, на поверхности которой располагаются гликопротеины Е1, Е2, Е3, пронизывающие липидный слой. Диаметр вирионов- от 65 до 70 нм.

Семейство Флавивирусы (Flaviviridae) происходит от латинского flavus – желтый, по названию заболевания желтая лихорадка. Патогенные для человека входят в состав 2 родов:

Флавивирус (желтая лихорадка, вирус клещевого энцефалита, вирус омской геморрагической лихорадки, вирус лихорадки денге, вирус японского энцефалита, вирус лихорадки Западного Нила)

Гепацивирус (вирус гепатита С)

Это сложные РНК геномные вирусы сферической формы, их диаметр 40-60 нм. Геном состоит из линейной однонитчатой плюс-нитевой РНК, окруженной капсидом с кубическим типом симметрии. В состав нуклеокапсида входит один белок – V2. Нуклеокапсид окружен суперкапсидом, на поверхности которого содержится гликопротеин V3. На внутренней стороне суперкапсида расположен структурный белок V1.

Семейство Ортомиксовирусы (Orthomyxoviridae) включает в себя род:

Инфлюэнцавирус (вирус гриппа, который включает 3 серотипа: А, В,С)

Диаметр вирусной частицы 80-120 нм. Вирион имеет сферическую форму, В центре вириона расположен нуклеокапсид, имеющий спиральный тип симметрии. Геном вирусов гриппа представляет собой спираль однонитчатой сегментированной минус-нитевой РНК. Капсид состоит в основном из белка – нуклеопротеина (NР), а также белков полимеразного комплекса (Р). Нуклеокапсид окружен слоем матриксных и мембранных белков (М), которые участвуют в сборке вирусной частицы. Поверх этих структур располагается суперкапсид – наружная липопротеиновая оболочка, которая несет на своей поверхности шипики. Шипики образованы двумя сложными белками-гликопротеинами: гемагглютинином (Н) и нейраминидазой (N).

Семейство Парамиксовирусы (Paramyxoviridae), которое включает 2 подсемейства:

Подсемейство Парамиксовирусы:

Морбилливирус (вирус кори)

Респировирус (вирус парагриппа)

Рубулавирус (вирус паротита, парагриппа)

Подсемейство Пневмовирусы:

Пневмовирус (респираторно-синцитиальный вирус (РС))

Метапневмовирус (РС-вирус)

Вирион парамиксовирусов имеет сферическую форму, диаметр 150-300 нм, окружен оболочкой с гликопротеиновыми шипами. Под оболочкой находится спиральный нуклеокапсид, состоящий из нефрагментированной линейной однонитевой минус-РНК, связанной белками: нуклеопротеином (NР), полимеразой-фосфопротеином (Р) и большим (L) белком. Нуклеокапсид ассоциирован с матриксным (М) белком, расположенным под оболочкой вириона. Оболочка вириона содержит шипы – два гликопротеина: белок слияния (F), прикрепительный белок гемагглютинин-нейраминидаза (HN), гемагглютинин (Н) или (G) белок.

Семейство Рабдовирусы (Rhabdoviridae) включает около 80 родов, вызывают заболевания животных и растений.

Лассавирус (вирус бешенства)

Везикуловирус (вирус везикулярного стоматита)

Вирионы имеют форму цилиндра с полукруглым и плоским концами (форма пули), размер вирионов 130х300х60х80. Состоят из двухслойной липопротеиновой оболочки и нуклеокапсида спиральной симметрии. Оболочка изнутри выстлана М-белком, а снаружи от нее отхоят шипы гликопротеина G. РНП нуклеокапсида состоит из геномной РНК и белков: N – белок, укрывающий как чехол РНК, L –белок и NS – белок, являющиеся транскриптазой вируса. Геном рабдовирусов представлен однонитевой нефрагментированной линейной минус-РНК.

Семейство Филовирусы (Filoviridae) содержит два рода:

Род марбургподобных вирусов (африканская геморрагическая лихорадка Марбург)

Род эболаподобных вирусов (африканская геморрагическая лихорадка Эбола)

Вирусы имеют вид длинных филаментов (80-1000нм) с оболочкой и однонитевой минус-РНК, заключенной в капсид. Содержит полимеразу. Симметрия капсида спиральная. На оболочке имеются шипы (спикулы).

Семейство Коронавирусы (Coronaviridae), включает в себя 1 род, объединяющий более 10 видов, вызывающих заболевания у человека и животных.

Коронавирус (вызывает поражения респираторных органов, в т.ч. SARS, ЖКТ, нервной системы)

Вирионы округлой формы размером 80-220нм. Сердцевина вириона представлена спиральным нуклеокапсидом, содержащим однонитевую плюс-РНК. Нуклеокапсид окружен липидной оболочкой, покрытой снаружи булавовидными выступами – пепломерами. Пепломеры придают вирусной частице вид солнечной короны. В оболочку вириона встроены гликопротеины Е1 и Е2, которые отвечают за адсорбцию вируса на клетке и проникновение в клетку хозяина.

Семейство Ретровирусы (Retroviridae), которое влючает 7 родов:

Альфаретровирус (вирусы лейкоза, саркомы птиц, саркомы Рауса кур)

Бетаретровирус (вирус рака молочных желез мышей, эндогенный ретровирус человека, вирус обезьян)

Гаммаретровирус (вирусы саркомы и лейкемии мышей, кошек, приматов)

Дельтаретровирус (вирус лейкемии КРС, лимфотропные вирусы Т-клеток человека)

Эпсилоретровирус (вирус саркомы кожи)

Лентивирус (вирус иммунодефицита человека)

Спумавирус (пенящие вирусы человека, обезьян, бычий синцитиальный вирус)

Ретровирусы имеют сферическую форму, размер 80-130нм. Вирион имеет оболочку и нуклеокапсидную сердцевину. Капсид икосаэдрический. Обратная транскриптаза связана с геномом однонитевой плюс- РНК. Вирусы содержат протеины: группового антигена (gag), полимеразный протеин (pol) и белки оболочки (env). Известно около 30 онкоантигенов.

Семейство Аренавирусы (Arenaviridae) включает род:

Аренавирус (вирусы лимфоцитарного хориоменингита, Ласа, Хунин, Мачупо, Гуанарито, вызывающие тяжелые геморрагические лихорадки)

Вирион имеет сферическую или овальную форму, диаметр около 120нм. Снаружи он окружен оболочкой с булавовидными гликопротеиновыми шипами GP1, GP2. Под оболочкой расположены 12-15 клеточных рибосом, капсид спиральный. Геном представлен двумя сегментами (L, S) однонитевой минус-РНК, кодируется 5 белков:L, Z, N, G.

Семейство Калицивирусы (Caliciviridae) содержит вирусы гастроэнтерита группы Норволк и вирус везикулярной экзантемы свиней.

Вирион безоболочечный, имеет икосаэдрический капсид с 32 чашеобразными углублениями (ямками). Форма сферическая, диаметр 27-38нм. На поверхности вириона различают 10 выступов, сформированных краями чашеобразных углублений. Геном – линейная, однонитевая плюс-РНК.

Введение 2 стр.

Глава 1. Строение вирусов. 4 стр.

Глава 2. Разнообразие вирусов. 8 стр.

Глава 3. Биологическая роль вирусов. 11 стр.

Заключение. 14 стр.

Список литературы. 15 стр.

Приложение. 16 стр.

Введение.

"Вирус - это, по существу, часть клетки. Мы считаем вирусами те компоненты клетки, которые достаточно независимы для того, чтобы передаваться другим клеткам, и сравниваем их с другими клеточными компонентами, более прочно связанными со всей системой."
Г. Руска

В 1852 г. русский ботаник Д.И. Ивановский впервые получил инфекционный экстракт из растений табака, пораженных мозаичной болезнью. Когда такой экстракт пропустили через фильтр, способный задерживать бактерии, отфильтрованная жидкость все еще сохраняла инфекционные свойства. В 1898 г. голландец Бейеринк придумал новое слово "вирус" (от латинского слова, означающего "яд"), чтобы обозначить этим термином инфекционную природу некоторых профильтрованных растительных жидкостей. Хотя удалось достичь значительных успехов в получении высокоочищенных проб вирусов и было установлено, что по химической природе это нуклеопротеины (нуклеиновые кислоты, связанные с белками), сами частицы все еще оставались неуловимыми и загадочными, потому что они были слишком малы, чтобы их можно было увидеть с помощью светового микроскопа. Поэтому-то вирусы и оказались в числе первых биологических структур, которые были исследованы в электронном микроскопе сразу же после его изобретения в 30-е годы прошлого столетия.

Вирусы отличаются от микроорганизмов следующими особенностями: 1) они содержат нуклеиновую кислоту только одного типа – или ДНК, или РНК; 2) для их репродукции необходима только нуклеиновая кислота; 3) они не способны размножаться вне живой клетки. Вирусы, таким образом, не являются самостоятельными организмами, а используют для своего размножения живые клетки: их репродукция происходит в клетке-хозяине. Клеточные механизмы нужны как для репликации нуклеиновой кислоты, так и для синтеза белковой оболочки вируса. Развитие вируса приводит к гибели клетки-хозяина. Вне клетки вирус существует в виде вирусной частицы (вириона), которая состоит из нуклеиновой кислоты и белковой оболочки – капсида. Поэтому вирусную частицу называют также нуклеокапсидом. [Шлегель, 1987] В то же время внутриклеточный вирус есть самореплицирующаяся форма, не способная к бинарному делению. Тем самым в определение вируса закладывается принципиальное различие между клеточной формой, воспроизводящейся только из вирусной нуклеиновой кислоты. Однако качественное отличие вирусов от про- и эукариот не ограничивается только одной этой стороной, а включает ряд других: 1) наличие одного типа нуклеиновой кислоты (ДНК или РНК); 2) отсутствие клеточного строения и белоксинтезирующих систем; 3) возможность интеграции в клеточный геном и синхронной с ним репликации.

Вместе с тем вирусы отличаются от обычных репликонов, какими являются молекулы ДНК всех микроорганизмов и любых других клеток, а также плазмид и транспозонов, поскольку упомянутые репликоны являются биомолекулами, которые нельзя отнести к живой материи. [Борисов и др., 1994]

Вирусы распознаются по последствиям своего развития в клетках хозяина. Они разрушают целые комплексы клеток и вызывают поражения тканей, что ведет к появлению некротических пятен или зон лизиса. Обычные хозяева вирусов – это растения, животные и микроорганизмы. [Шлегель, 1987]

Глава 1. Строение вирусов.

Вирусная частица, называемая также вирионом, состоит из нуклеиновой кислоты (ДНК или РНК), окруженной белковой оболочкой. Эту оболочку называют капсидом. Такая единица (капсид + нуклеиновая кислота = нуклеокапсид) может быть «голой», а в других случаях окружена оболочкой. Голым нуклеокапсидами являются, например, частицы вируса табачной мозаики, вируса, вызывающего бородавки, и аденовируса. Дополнительная оболочка окружает вирусы гриппа и герпеса.

Капсид в свою очередь состоит из субъединиц – капсомеров. Он чаще всего имеет симметричное строение. Различают два вида симметрии – спиральную и кубическую. В таблице 1 различные вирусы сгруппированы по их структуре.

Таблица 1. Морфологические классы вирусов.

Спиральная структура

Полиэдрическая структура (икосаэды)

Сложные вирусы (икосаэдрическая головка + спиральный хвост)

Рассмотрим четыре вируса, которые известны как возбудители болезней: два вируса со спиральной симметрией, из них один с голыми частицами (вирус табачной мозаики) и один с дополнительной оболочкой (вирус гриппа), и два типа вирусов с кубической симметрией – с голыми частицами (вирус полиомиелита и другие полиэдрические вирусы) и с оболочкой (вирус герпеса).

Вирус табачной мозаики. Это типичный пример вируса со спиральной симметрией. Его легко выделить из выжатого сока зараженных растений. Частицы представляют собой палочки толщиной 18 нм. Этот палочковидный нуклеокапсид состоит примерно из 2100 капсомеров. Они расположены по винтовой линии и образуют полый цилиндр. Каждый капсомер состоит из одной полипептидной цепи (158 аминокислот, последовательность которых определена). В стенке полого цилиндра между капсомерами помещается цепь РНК, которая тоже идет по винтовой линии.

Вирус гриппа. Частицы вируса гриппа имеют диаметр 110 нм. Нуклеокапсид, как и у вируса табачной мозаики, имеет спиральное строение, но он не палочковидный, а многократно закрученный. Нуклеокапсид окружен оболочкой – фрагментом мембраны клетки-хозяина, из которой вышел вирион. Оболочка имеет на своей наружной стороне шипы, которые служат для адсорбции вириона на поверхности новой клетки-хозяина и содержат мукопротеины и фермент нейраминидиазу. Этот фермент отщепляет от мукопротеинов инфицируемой клетки один компонент – N-ацетилнейраминовую кислоту – и, по-видимому, играет роль в разжижении слизи, покрывающей эпителиальные клетки носоглотки. Размножение вируса происходит внутри клеток. Освобождение вириона напоминает процесс почкования; при этом наружная оболочка вирусной частицы образуется из мембраны клетки-хозяина, которая может быть модифицирована добавлением белков вирусного происхождения (например, нейраминидазы).

Существует много различных разновидностей вируса гриппа. Какую именно ткань будет поражать вирус, зависит от специфичности вируса по отношению к клеткам-хозяевам и от рецепторных свойств клеток. Вирус может вызывать нарушение клеточного метаболизма или даже гибель клетки. Кроме того, он действует как антиген и стимулирует образование антител в организме хозяина. Вирусы, ответственные за большие эпидемии гриппа, отличаются друг от друга по своей вирулентности и патогенности.

Полиэдрические вирусы без наружной оболочки. Многие вирусы, кажущиеся сферическими, на самом деле имеют форму многогранника. Чаще всего это икосаэдр (двадцатигранник) – тело, ограниченное 20 равносторонними треугольниками и имеющее 12 вершин. Капсид икосаэдрического вируса состоит из капсомеров двух типов: в вершинах располагаются пентоны, состоящие из пяти белковых мономеров (протомеров); остальную поверхность граней и ребра образуют гексоны, состоящие из шести протомеров. Построение капсида из капсомеров следует законам кристаллографии; в соответствии с этим наименьший икосаэдрический капсид должен состоять из 12 пентонов, следующий по величине – из 12 пентонов и 20 гексонов. Существуют вирусы из 252 и даже 812 капсомеров.

По принципу икосаэдра построено очень много вирусов: вирусы полиомиелита, ящура, аденовирусы.

Полиэдрические вирусы с наружной оболочкой. Икосаэдр, окруженный оболочкой, - такова форма возбудителей ветряной оспы, опоясывающего лишая и простого герпеса.

Икосаэдрический капсид вируса герпеса состоит из 162 капсомеров. Наружная оболочка, несомненно, образуется из внутренней ядерной мембраны клетки-хозяина. Вирусы герпеса размножаются в ядрах клеток; капсиды новых вирусных частиц одеваются оболочкой из ядерной мембраны, «отпочковываются» от ядра и выводятся наружу по системе эндоплазматического ретикулума.

Ветряная оспа – относительно легкая детская болезнь. Вирус инфицирует верхние дыхательные пути, разносится кровью по всему телу и, закрепляясь в коже, в конечном счете вызывает здесь образование пузырьков. Опоясывающий лишай возникает у частично иммунных лиц; он появляется в результате реактивации вируса ветряной оспы. Таким образом, оба заболевания вызываются одним и тем же вирусом.

Вирус оспы. Вирусы оспы – наиболее крупные из зоопатогенных вирусов. Их частицы устроены совсем не так, как у вирусов четырех представленных выше типов. Они содержат ДНК, белок и несколько липидов, из-за чего их иногда называют комплексными вирионами. Частицы вирусов натуральной оспы и коровьей оспы имеют вид округленных блоков. Они состоят из внутреннего тельца, содержащего двухцепочечную ДНК, двойного слоя, содержащего белок, эллиптических белковых телец и наружной мембраны; частицу обвивают плотно прилегающие к ней нити. Эти вирусные частицы очень устойчивы к высыханию и поэтому чрезвычайно инфекционны. Натуральной оспой могут заболевать только люди и обезьяны. Вирусом коровьей оспы могут заражаться также коровы, кролики и овцы. Оба вируса имеют общие антигены. Поэтому людям профилактически прививают вирус коровьей оспы, который получают от коров и который у человека вызывает весьма слабые симптомы болезни. Такая активная вакцинация приводит к образованию антител, которые обуславливают иммунитет и к натуральной оспе.

Морфология бактериофагов. Строение бактериофагов в основном изучали на примере серии Т Escherichia coli. Колифаг Т 2 состоит из полиэдрической головки длиной 100 нм и отростка, или «хвоста», примерно такой же длины. Поэтому говорят о «составных» вирусах. Головка состоит из капсомеров и содержит внутри ДНК. Количество белка и ДНК примерно одинаково. Отросток фага Т 2 имеет сложное строение. В нем можно различить не менее трех частей: полый стержень, окружающий его сократимый чехол и находящуюся на дистальном конце стержня базальную пластинку с шипами и нитями (от последних зависит специфическая адсорбция на клетке-хозяине). На электронных микрофотографиях, полученных при негативном контрастировании, можно видеть фаговые частицы в двух состояниях: у одних частиц головка очень резко выделяется на электроноплотном фоне и чехол отростка растянут, у других головка мало отличается от фона по плотности и чехол находится в сокращенном состоянии. Первое состояние характерно для активного фага, в головке которого заключена ДНК, второе – для фага, который инъецировал свою ДНК в бактериальную клетку.

Многие бактериофаги имеют более простое строение. В зависимости от формы зрелых фаговых частиц различают ряд типов. Большинство фагов содержит двухцепочечную ДНК. В последние годы, однако, было обнаружено несколько фагов с одноцепочечной ДНК и несколько с одноцепочечной РНК. Содержащие РНК фаги fr, R17, Qβ и другие обладают наименьшими из известных геномов: в них 3500-4500 нуклеотидов. [Шлегель, 1987]

Глава 2. Разнообразие вирусов.

Вирусы составляют царство Vira, которое подразделено по типу нуклеиновой кислоты на два подцарства – рибовирусы и дезоксирибовирусы. Подцарства делятся на семейства, которые в свою очередь подразделяются на роды. Понятие о виде вирусов пока еще четко не сформулировано, так же как и обозначение разных видов.

В качестве таксономических характеристик первостепенное значение придается типу нуклеиновой кислоты и ее молекулярно-биологическим признакам: двунитевая, однонитевая, сегментированная, несегментированная, с повторяющимися и инвертированными последовательностями и др. Однако в практической работе прежде всего используются характеристики вирусов, полученные в результате электронно-микроскопических исследований: морфология, структура и размеры вириона, наличие или отсутствие внешней оболочки (суперкапсида), антигены, внутриядерная или цитоплазматическая локализация и др. Наряду с упомянутыми признаками учитываются и резистентность к температуре, рН, детергентам и т.д.

В настоящее время вирусы человека и животных включены в состав 18 семейств. Принадлежность вирусов к определенным семействам определяется типом нуклеиновой кислоты, структурой, целостностью или фрагментацией генома, а также наличием или отсутствием внешней оболочки. При определении принадлежности к семейству ретровирусов обязательно учитывается наличие обратной транскриптазы. Некоторые таксономические признаки представителей важнейших семейств вирусов человека и животных приведены в таблице 2 (см. приложение 1).

К РНК-содержащим вирусам относится большинство патогенных для человека вирусов. Они отличаются многообразием строения генома, высокими изменчивостью и скоростью эволюции, что приводит к появлению новых возбудителей инфекционных заболеваний. Большинство РНК-геномных вирусов репродуцируется в цитоплазме клетки, хотя некоторые из них на определенных этапах развития локализуются внутри ядра. В настоящее время известно 13 патогенных для человека семейств РНК-геномных вирусов:

1. Семейство Пикорнавирусов.

1.1. Энтеровирусы. Представители: вирусы полиомиелита, Коксаки, ЕСНО, гепатита А и др.

1.2. Риновирусы.

1.3.Афтовирусы. Представители: вирус ящура

2. Семейство Калицивирусов. Представители: вирус Норфолк.

3. Семейство Реовирусов.

3.1. Реовирусы.

3.2. Ротавирусы.

3.3. Орбивирусы.

4. Семейство Ретровирусов.

4.1. Подсемейство Спумавирусов.

4.2. Подсемейство Онковирусов.

4.3. Подсемейство Лентивирусов. Представители: ВИЧ.

5. Семейство Тогавирусов.

5.1. Альфавирусы.

5.2. Вирус краснухи.

6. Семейство Флавивирусов.

6.1. Вирус желтой лихорадки.

6.2. Вирус лихорадки денге.

6.3. Вирус японского энцефалита

6.4. Вирус клещевого энцефалита

6.5. Вирус омской геморрагической лихорадки (ОГЛ).

7. Семейство Буньявирусов.

7.1. Вирус крымской геморрагической лихорадки.

7.2. Вирусы москитных лихорадок.

7.3. Вирус геморрагической лихорадки с почечным синдромом.

8. Семейство Аренавирусов.

8.1. Вирус лимфоцитарного хориоменингита.

8.2. Вирус Ласа.

9. Семейство Филовирусов.

9.1. Вирус Марбург.

9.2. Вирус Эбола.

10. Семейство Рабдовирусов.

10.1. Вирус везикулярного стоматита.

10.2. Вирус бешенства.

11. Семейство Коронавирусов.

12.Семейство Парамиксовирусов.

12.1. Вирусы парагриппа человека (ВПЧГ).

12.2. Вирус паротита.

12.3. Вирус кори.

12.4. Респираторно-синцитиальный (РС) вирус.

13. Семейство Ортомиксовирусов.

13.1. Вирусы гриппа.

Патогенные для человека ДНК-содержащие вирусы входят в состав 6 семейств.

По сравнению с РНК-геномными вирусами они генетически более консервативны, т.е. менее изменчивы, нередко способны к длительной персистенции в организме хозяина. Подавляющее большинство ДНК-содержащих вирусов репродуцируется в ядрах клеток.

1. Семейство Аденовирусов.

2. Семейство Парвовирусов.

3. Семейство Герпесвирусов.

3.1. Альфа-герпесвирусы.

3.2. Бета-герпесвирусы

3.3. Гамма-герпесвирусы

4. Семейство Поксовирусов.

4.1. Вирус натуральной оспы.

4.2. Вирус оспы обезьян.

4.3. Вирус осповакцины (коровьей оспы).

4.4. Вирус контагиозного моллюска.

5.Вирусы гепатита.

5.1. Вирус гепатита А (семейство пикорнавирусов)

5.2. Вирус гепатита В.

5.3. Дельта-вирус.

5.4. Вирус гепатита С.

5.6. Вирус гепатита Е.

6. Онкогенные вирусы.

6.1.Паповавирусы. Представители: Папилломавирусы человека, вирусы полиомы, SV-40.

6.2. Вирусы герпеса.

6.3. Поксивирусы.

6.4. Вирус гепатита В. [Борисов и др., 1994]

Глава 3. Биологическая роль вирусов.

Всем известно, что вирусы играют в основном негативную роль. Но не все знают, что именно вирусы сыграли немаловажную роль в становлении микробиологии и генетики в частности, помогли ученым в изучении свойств и структуры ДНК. Например, при изучении жизненного цикла бактериофагов ученые Лурия и Дельбрюк пришли к предположениям о биологической роли ДНК.

В 1970 г. не известные широкой научной общественности Г.Темин и Д.Балтимор опубликовали в Nature статьи, посвященные обратной транскриптазе (ОТ) – ферменту РНК-содержащих, в том числе раковых, вирусов, которые синтезируют ДНК на матрице РНК, т.е. осуществляют реакцию, обратную той, которую до тех пор наблюдали в клетках.
Открытие обратной транскриптазы позволило выделить первые гены.

Журнал Time назвал Уотсона «охотником за генами». Сам же ученый сказал следующее: «Это захватывающая перспектива. Тридцать лет назад мы не могли и мечтать о том, чтобы узнать структуру генома даже мельчайшего вируса. А сегодня мы уже расшифровали геном вируса СПИДа и почти полностью прочитали геном кишечной палочки объемом в 4,5 млн букв ген-кода. Точное знание детальной структуры генома человека – это восхитительно!».

В нашем геноме много последовательностей, доставшихся нам в «наследство» от ретровирусов. Эти вирусы, к которым относятся вирусы рака и СПИДа, вместо ДНК в качестве наследственного материала содержат РНК. Особенностью ретровирусов является, как уже говорилось, наличие обратной транскриптазы. После синтеза ДНК по РНК вируса вирусный геном встраивается в ДНК хромосом клетки.
Таких ретровирусных последовательностей у нас много. Время от времени они «вырываются» на волю, в результате чего возникает рак (но рак в полном соответствии с законом Менделя проявляется лишь у рецессивных гомозигот, т.е. не более чем в 25% случаев). Совсем недавно было сделано открытие, которое позволяет понять не только механизм встраивания вирусов, но и назначение некодирующих последовательностей ДНК. Оказалось, что для встраивания вируса необходима специфическая последовательность из 14 букв генетического кода. Таким образом, можно надеяться, что вскоре ученые научатся не только блокировать агрессивные ретровирусы, но и целенаправленно «внедрять» нужные гены, и генотерапия из мечты превратится в реальность.
В организме млекопитающих ретровирусы играют и еще одну немаловажную роль. В отношении млекопитающих, у которых плод развивается внутри организма матери, правомерен вопрос: почему иммунная система матери позволяет развиваться организму, который наполовину генетически ей чужероден, поскольку половина генома плода отцовская?
Все дело в ретровирусах, которые блокируют активность иммунных Т-лимфоцитов, ответственных за отторжение органов и тканей, содержащих чужеродные белки, например, после трансплантации органов. Эти ретровирусы активируются в геноме клеток плаценты, которая образуется тканями плода.
Недавно был обнаружен вирус, который блокирует развитие (экспрессию) ретровируса. Если этим вирусом-блокатором заразить беременную мышь, то мышата рождаются нормальными и в срок. Но если его ввести в клетки плаценты, то происходит выкидыш плода, так как активируются Т-лимфоциты матери.
Не стоит забывать, что ретровирусные последовательности возникают также непосредственно на концах хромосом – теломерах. Как известно, теломеры состоят из одноцепочечной ДНК, которая синтезируется ферментом теломеразой по матрице РНК. Считается, что теломеры являются нашими молекулярными часами, поскольку они укорачиваются с каждым клеточным делением. Раньше считалось, что в теломерах нет генов, однако расшифровка генома показала, что генов там довольно много и они активны в детстве и молодом возрасте, постепенно «угасая» по мере старения организма.

Способы передачи вирусных заболеваний.

Капельная инфекция - самый обычный способ распространения респираторных заболеваний. При кашле и чихании в воздух выбрасываются миллионы крошечных капелек жидкости (слизи и слюны). Эти капли вместе с находящимися в них живыми вирусами могут вдохнуть другие люди, особенно в местах скопления большого количества народа, к тому же еще и плохо вентилируемых. Стандартные гигиенические приемы для защиты от капельной инфекции правильное пользование носовыми платками и проветривание комнат.

Некоторые микроорганизмы, такие, как вирус оспы, очень устойчивы к высыханию и сохраняются в пыли, содержащей высохшие остатки капель. Даже при разговоре изо рта вылетают микроскопические брызги слюны, поэтому подобного рода инфекции очень трудно предотвратить, особенно если микроорганизм очень вирулентен (заразен).

Контагиозная передача (при непосредственном физическом контакте). В результате непосредственного физического контакта с больными людьми или животными передаются сравнительно немногие болезни. Сюда прежде всего относятся венерические (т. е. передающиеся половым путем) болезни, такие, как СПИД. К контагиозным вирусным болезням относятся обычные бородавки (папилломавирус) и простой герпес - "лихорадка" на губах.

Переносчик - это любой живой организм, который разносит инфекцию. Он получает инфекционное начало от организма, называемого резервуаром или носителем. Вирус бешенства сохраняется и передается одним и тем же животным, например собакой или летучей мышью. В этих случаях переносчик выступает в качестве второго хозяина, в теле которого может размножаться патогенный микроорганизм. Насекомые могут переносить возбудителей болезней на наружных покровах тела.

Заключение.

Вирусы играют довольно важную роль в биосфере – они выступают как бы одним из факторов естественного отбора, позволяют стабилизировать численность популяций живых организмов. Более сильные организмы вырабатывают антитела и вместе с ними иммунитет, более слабые – погибают. Это позволяет более приспособленным давать потомство с уже сформированным иммунитетом к данному вирусу.

Вирусы помогли ученым изучить роль ДНК в организме. А также было выяснено, что ретровирусы не только являются возбудителями страшных заболеваний: рака и СПИДа, - но и позволяют всем нам появиться на свет, т.к. они блокируют иммунные Т-лимфоциты матери, что не позволяет плоду быть отторгнутым.

Таким образом, вирусы играют не только отрицательную роль, о которой все люди знают не понаслышке, но и исключительно положительную. Дальнейшее исследование этих загадочных «живых – неживых» организмов не только необходимо для человечества, чтобы бороться с неизлечимыми болезнями, вызываемыми вирусами, но и, я думаю, не менее интересно.

Список литературы.

1. Борисов Л.Б., Смирнова А.М., Фрейдлин И.С. и др. «Медицинская микробиология, вирусология, иммунология». – М.: «Медицина», 1994

2. Шлегель Г. «Общая микробиология». – М.: «Мир», 1987

3. www.medicinform.net

4. www. Elite-genetix.ru

Приложение 1.

Таблица 2. Некоторые таксономические признаки представителей важнейших семейств вирусов человека и животных.

Таксономический признак

Семейство

Важнейшие представители

I. ДНК-содержащие вирусы

Двунитевая ДНК

Аденовирусы

Аденовирусы

Отсутствие внешней оболочки

Паповавирусы

Вирусы папилломы, полиомы и бородавок человека

Однонитевая ДНК

Отсутствие внешней оболочки

Парвовирусы

Аденассоциированные вирусы

Двунитевая ДНК. Наличие внешней оболочки

Герпесвирусы

Вирусы простого герпеса, цитомегалии, ветряной оспы

Гепаднавирусы

Вирус гепатита В

Поксовирусы

Вирус натуральной оспы, осповакцины

II. РНК-содержащие вирусы

Плюс-однонитевая РНК. Отсутствие внешней оболочки

Пикорнавирусы

Вирусы полиомиелита, Коксаки, ЕСНО, вирус гепатита А.

Калицивирусы

Вирусы гастроэнтерита детей (Норфолк)

Двунитевая РНК. Отсутствие внешней оболочки

Реовирусы

Реовирусы, ротавирусы, орбвирусы

Наличие обратной транскриптазы

Ретровирусы

ВИЧ, вирусы Т-лейкоза, онковирусы

Плюс-однонитевая РНК. Наличие внешней оболочки

Тогавирусы

Вирусы омской геморрагической лихорадки, краснухи

Плюс-нитевая РНК (позитивный геном)

Флавивирусы

Вирусы клещевого энцефалита, лихорадка денге, желтой лихорадки.

Минус-однонитевая РНК.

Буньявирусы

Вирусы Буньямвера, крымской геморрагической лихорадки

Аренавирусы

Вирусы лимфоцитарного хориоменингита, болезни Лассо

Рабдовирусы

Вирусы бешенства, везикулярного стоматита

Двунитевая РНК. Наличие внешней облочки

Парамиксовирусы

Вирусы парагриппа, паротита, кори, РСВ

Ортомиксовирусы

Вирусы гриппа человека, животных, птиц

Исследование РНК вируса гепатита С является наиважнейшей процедурой, которая позволяет с большой точностью устанавливать длительность и методы лечения больных.

Диагностика заболевания состоит из нескольких различных исследований крови, таких как:

  • маркеры гепатита С (анти-HCV);
  • определение РНК вируса гепатита С (РНК HCV).

Первое исследование делается при первом подозрении на гепатит. Второй вариант является наиболее значимым при лечении HCV РНК, поэтому рассмотрим его более подробно.

Что такое вирусный гепатит С?

Вирусный гепатит C, или HCV, это инфекционная болезнь, поражающая печень. Заражение вирусом происходит через кровь. Заразиться можно, делая переливание крови, когда не соблюдаются правила по стерилизации медицинских инструментов. Реже встречаются случаи, когда заболевание получается половым путем или от беременной матери к плоду. Гепатит С бывает 2-х типов.

Хронический гепатит С наиболее опасен. Это форма болезни, которая может длиться на протяжении всей жизни. Она приводит к серьезным проблемам функционирования печени, таким как цирроз либо рак. У 70-90% инфицированных людей болезнь переходит в хроническую стадию.

Важнейшая состоит в том, что он протекает скрытно, без желтушных признаков. При этом чаще всего жалуются на поднятие температуры, тошноту и рвоту, физическую слабость, повышенную утомляемость, потерю аппетита и веса. При этом на фоне небольшого уплотнения тканей печени достаточно часто происходит ее злокачественное перерождение. По этой причине вирусный гепатит С зачастую называют «бомбой замедленного действия» или «ласковым убийцей».

Другая особенность болезни заключается в очень медленном ее развитии, исчисляемом десятками лет.

Как правило, заразившиеся не ощущают никаких симптомов и не подозревают о своем истинном состоянии. Часто заболевание можно выявить только при обращении к врачу по другому вопросу.

К группе риска относятся:

  • дети, получившие вирус гепатита С от матерей;
  • наркоманы;
  • люди, прокалывавшие части тела или сделавшие татуировки нестерильными инструментами;
  • получившие донорскую кровь либо органы (до 1992 года, когда гемодиализ не проводился);
  • лица, инфицированные ВИЧ;
  • медицинские работники, контактирующие с инфицированными пациентами.

Определение РНК гепатита С

Определение РНК вируса HCV-RNA, также именуемый , это исследование биологического материала (крови), с помощью которого можно определить в организме непосредственное наличие самого геноматериала вируса гепатита (любой отдельно взятый вирус является одной-единственной частичкой РНК).

Основной метод проведения теста — ПЦР, или метод полимеразно-цепной реакции.

Существуют два вида тестов крови на определение РНК HCV:

  • качественный;
  • количественный.

Качественный тест

Проведение качественного анализа дает возможность определить, находится ли вирус в составе крови. Все пациенты, у которых найдены антитела С-гепатита, должны пройти данный тест. По его результатам можно получить 2 ответа: «присутствует» либо «отсутствует» вирус. По положительному результату теста (обнаружено) можно судить об активном размножении вируса, который заражает здоровые клетки в печени.

Тест, проводимый на качественный ПЦР, настроен на конкретную чувствительность, от 10 до 500 МЕ/мл. Если обнаруженный в составе крови вирус гепатита при удельном содержании меньше 10 МЕ/мл, то обнаружение вируса может стать невозможным. Очень низкое значение удельного содержания вируса наблюдается среди пациентов, для которых назначена противовирусная терапия. Поэтому важным является тот факт, насколько высока чувствительность медицинской системы для диагностирования и постановки качественного результата при полимеразной цепной реакции.

Зачастую полимеразная цепная реакция C-гепатита проводится сразу же после нахождения соответствующих антител. Последующие тесты, при прохождении противовирусной терапии, проводятся на 4-ю, 12-ю и 24-ю недели. И еще один анализ после прекращения ПВТ делается через 24 недели. Затем — один раз в год.

Количественный тест

Количественный анализ ПЦР РНК, иногда называемый вирусной нагрузкой, определяет концентрацию (удельное содержание) вируса в составе крови. Другими словами, под вирусной нагрузкой понимается определенное количество вирусной РНК, которое может находиться в конкретном количестве крови (принято использовать 1 мл, равный 1 см в кубе).

Единицы измерения для результатов теста — международные (стандартные) единицы, разделенные на один миллилитр (МЕ/мл). Содержание вируса иногда представляется по-разному, это зависит от лабораторий, где проводятся исследования. Для гепатита С количественное определение иногда использует такие значения, как копии/мл.

Необходимо понимать, что нет никакой конкретной зависимости в степени тяжести гепатита С от концентрации данного штамма в составе крови.

Проверка «вирусной нагруженности» позволяет определить степень инфекционности заболевания. Так риск заразить вирусом другого человека повышается при повышении концентрации гепатита в составе крови. К тому же высокое содержание вируса снижает эффект от проводимого лечения. Поэтому малая вирусная нагрузка является очень благоприятным фактором для успешного лечения.

К тому же тест гепатита С и его определение методом ПЦР играют большую роль при применении терапии от болезни и определения успешности лечения. На основании результатов теста осуществляется планирование курса реабилитации. Например, при слишком медлительном уменьшении удельной концентрации вируса гепатита, противовирусная терапия продлевается, и наоборот.

В современной медицине считается, что нагрузка больше 800000 ME/мл является высокой. Нагрузка же сверх 10000000 ME/мл считается критической. Но у специалистов из разных стран и по сей день не появилось одинакового мнения о пределах вирусной нагрузки.

Частота проведения количественного теста

В общих случаях количественный анализ на гепатит HCV-RNA делается перед проведением противовирусной терапии и через 3 месяца по окончании лечебных процедур для определения качества проведенной терапии.

В качестве результата для количественного теста станет считаться количественная оценка результатов по образцу, указанному выше. В результате будет вынесен вердикт «ниже измеряемого диапазона» или «в крови не обнаружено» — это является нормой для здорового человека.

Параметр чувствительности качественного теста обычно ниже, чем чувствительность количественного анализа. Расшифровка «Отсутствующий» показывает, что оба вида анализов не нашли РНК вируса. При показателе теста «ниже измеренного диапазона» анализ количественного типа, скорее всего, не нашел РНК гепатита, хотя это подтверждает наличие вируса с очень маленьким удельным содержанием.

Гепатит C и его генотипы

Генотипирование РНК вируса гепатита C диагностирует присутствие разных . Науке известно более 10 типов генома вируса, но для медицинской практики достаточно выделить несколько генотипов, имеющих наибольший удельный вес в регионе. Определение генетического типа играет ключевую роль при выборе сроков лечения, что очень необходимо, если принять во внимание обширный спектр побочных эффектов лекарств от гепатита.

Способы лечения

Единственным действенным способом вылечить вирус гепатита С, как правило, оказывается сочетание 2-х медпрепаратов:

  • интерферона-альфа совместно с ;

По отдельности эти лекарства не так эффективны. Рекомендуемые дозировки лекарств и сроки применения должны назначаться только врачом и индивидуально каждому пациенту. Лечение этими лекарствами может растянуться на срок от 6 до 12 месяцев по первой схеме и от 3 до 6 месяцев по второй и третьей схеме.

17.1.1. Пикорнавирусы (семейство Picornaviridae)

Picornaviridae (исп. pico - малый, rna - рибонуклеиновая кислота) - семейство бе-зоболочечных вирусов, содержащих одно-нитевую плюс РНК. Семейство насчитывает более 230 представителей и состоит из 8 ро­дов: Enterovirus (111 серотипов), Rhinovirus (105 серотипов), Aphtovirus (7 серотипов), Hepatovirus (2 серотипа - 1 человека. 1 - обе­зьяны), Cardiovirus (2 серотипа); Parecovirus, Erbovirus, Kobuvirus - названия новых родов. Роды состоят из видов, виды - из серотипов.

Структура. Пикорнавирусы относятся к мелким просто организованным вирусам. Диаметр вируса - около 30 нм. Вирион состо­ит из икосаэдрического капсида, окружающе­го инфекционную однонитевую плюс РНК с протеином VPg (рис. 17.1).

Капсид состоит из 12 пятиугольников (пен-тамеров), каждый из которых, в свою очередь, состоит из 5 белковых субъединиц - прото-меров. Протомеры образованы 4 вирусными полипептидами: VP1, VP2, VP3, VP4.

Репродукция. Вирус взаимодействует с ре­цепторами на поверхности клетки (рис. 17.2). Геном вируса может поступить в клетку путем эндоцитоза (1) с последующим выходом нук­леиновой кислоты (2) из вакуоли или путем инъекции РНК через цитоплазматическую мембрану (1) клетки. На конце РНК имеется вирусный протеин (3) - VPg. Геном исполь­зуется, как иРНК, для синтеза белка {4, 5). Один большой полипротеин (4) транслиру­ется с вирусного генома. Затем полипротеин расщепляется на индивидуальные вирусные протеины, включая РНК-зависимую поли-меразу Полимераза синтезирует минус-нить матрицу с поверхности плюс-нити и репли­цирует геном. VPg ковалентно присоединяет­ся к 5"-концу вирусного генома. Структурные


белки собираются в капсид (<5), в него вклю­чается геном, образуя вирион. Вирионы ос­вобождаются из клетки посредством ее ли­зиса. Репродукция происходит в цитоплазме клеток и сопровождается цитопатическим действием. В культуре клеток под агаровым покрытием вирусы образуют бляшки.

17.1.1.1. Энтеровирусы

Энтеровирусы (от греч. enteron - кишка) - группа вирусов, обитающая преимуществен­но в кишечнике человека и вызывающая раз­нообразные по клиническим проявлениям болезни человека.

Энтеровирусы - РНК-содержащие вирусы семейства Picornaviridae рода Enterovirus. Род включает вирусы полиомиелита, Коксаки А и В (по названию населенного пункта в США, где они были впервые выделены), ECHO (аб­бревиатура от англ. Enteric cytopathogenic human orphan viruses - кишечные цитопатогенные человеческие вирусы сироты), энтеровирусы типов 68, 69, 70, 71 и др. В настоящее время имеются другие варианты классификации ро­да Enterovirus: например, энтеровирусы чело­века представлены видами полиовируса А, В, С и D, состоящими из серотипов.



Морфология и химический состав. Энтеро­вирусы - мелкие и наиболее просто органи­зованные вирусы, имеют сферическую форму, диаметр 20-30 нм, состоят из одноцепочечной плюс-нитевой РНК и капсида с кубическим типом симметрии. Вирусы не имеют супер-капсидной оболочки. В их составе нет углево­дов и липидов, поэтому они нечувствительны к эфиру и другим растворителям жира.

Культивирование. Большинство энтеровиру-сов (за исключением вирусов Коксаки А) хо­рошо репродуцируется в первичных и переви­ваемых культурах клеток из тканей человека и сопровождается цитопатическим эффектом. В культурах клеток под агаровым покрытием энтеровирусы образуют бляшки.

Антигенная структура. Энтеровирусы имеют общие для всего рода группоспецифический и типоспецифические антигены.

Резистентность. Энтеровирусы устойчивы к факторам окружающей среды в широком диапазоне рН - от 2,5 до 11, поэтому они длительно (месяцами) сохраняются в воде,


почве, некоторых пищевых продуктах и на предметах обихода.

Многие дезинфектанты (спирт, фенол, по­верхностно-активные вещества) малоэффек­тивны в отношении энтеровирусов, однако последние погибают при действии УФ-лучей. высушивания, окислителей, формалина, тем­пературе -50 °С в течение 30 мин, а при кипя­чении - в течение нескольких секунд.

Восприимчивость животных. Энтеровирусы различаются по патогенности для лаборатор­ных животных. Вирусы Коксаки по патоген­ности для новорожденных мышей разделены на группы А и В. Вирусы ECHO непатогенны для всех видов лабораторных животных.



Эпидемиология и патогенез. Заболевания, вызываемые энтеровирусами, распространены повсеместно, отличаются массовым характе­ром с преимущественным поражением детей.

Источником инфекции являются больные и носители. Из организма больного возбуди­тели выделяются с носоглоточной слизью и фекалиями, из организма вирусоносителя - с фекалиями.

Энтеровирусы передаются через воду, поч­ву, пищевые продукты, предметы обихода, загрязненные руки, через мух.

Водные и пищевые эпидемические вспышки энтеровирусных инфекций регистрируются в течение всего года, но наиболее часто в летние месяцы. В первые 1-2 недели болезни энтеро­вирусы выделяются из носоглотки, обуславли­вая воздушно-капельный путь передачи.

Возбудители инфекции проникают в организм человека через слизистые оболочки носоглотки и тонкой кишки, размножаются в их эпители­альных клетках и регионарных лимфатических узлах, затем попадают в кровь. Последующее распространение вирусов определяется их свойс­твами и состоянием больного.

Клиника. Энтеровирусы вызывают заболева­ния, характеризующиеся многообразием кли­нических проявлений, так как могут поражать различные органы и ткани: ЦНС (полиомие­лит, полиомиелитоподобные заболевания (ми-алгия, миокардит), органы дыхания (острые респираторные заболевания), пищеваритель­ный тракт (гастроэнтерит, диарея), кожные и слизистые покровы (конъюнктивит, лихора­дочные заболевания с сыпью и без нее) и др.


Иммунитет. После перенесенной энтерови-русной инфекции формируется стойкий, но типоспецифический иммунитет.

Методы диагностики - вирусологический и сероло­гический с парными сыворотками больного. Вирусы выделяют из носоглоточной слизи в первые дни болезни, из кала, цереброспи­нальной жидкости. У погибших больных ви­русы выделяют из пораженных органов. При серодиагностике характерно нарастание тит­ров антител к энтеровирусам в 4 раза и более с 4-5-го до 14-го дня болезни.

Лечение. Патогенетическое. Применяют препараты интерферона в первые дни заболе­вания и другие противовирусные препараты.

Профилактика. Для профилактики энтеро-вирусных инфекций (за исключением поли­омиелита) специфические средства не приме­няют. Большое значение имеет неспецифичес­кая профилактика: своевременное выявление и изоляция больных, санитарный надзор за работой пищевых предприятий, водоснабже­нием, удалением нечистот и отбросов. Детям, общавшимся с больными, рекомендуют ин-терфероновые препараты.

17.1.1.1.1. Вирусы полиомиелита

Полиомиелит - острое лихорадочное за­болевание, которое иногда сопровождается поражением серого вещества (от греч. polios - серый) спинного мозга и ствола головного мозга, в результате чего развиваются вялые параличи и парезы мышц ног, туловища, рук.

Таксономия. Полиомиелит известен с глубо­кой древности. Вирусную этиологию болез­ни доказали К. Ландштайнер и Э. Поппер в 1909 г. Возбудитель полиомиелита относится к семейству Picornaviridae, роду Enterovirus, виду Poliovirus.

Структура. По структуре полиовирусы - ти­пичные представители рода Enterovirus.

Антигенные свойства. Различают 3 серотипа внутри вида: 1, 2, 3, не вызывающие перекрес­тного иммунитета. Все серотипы патогенны для обезьян, у которых возникает заболева­ние, сходное по клиническим проявлениям с полиомиелитом человека.


Патогенез и клиника. Естественная воспри­имчивость человека к вирусам полиомиелита высокая. Входными воротами служат слизис­тые оболочки верхних дыхательных путей и пищеварительного тракта. Первичная репро­дукция вирусов происходит в лимфатических узлах глоточного кольца и тонкой кишки. Это обуславливает обильное выделение вирусов из носоглотки и с фекалиями еще до появления клинических симптомов болезни. Из лимфа­тической системы вирусы проникают в кровь (виремия), а затем в ЦНС, где избирательно поражают клетки передних рогов спинного мозга (двигательные нейроны). В результате этого возникают параличи мышц. В случае накопления в крови вируснейтрализующих антител, блокирующих проникновение виру­са в ЦНС, ее поражения не наблюдается.

Инкубационный период продолжается в среднем 7-14 дней. Различают 3 клинические формы полиомиелита: паралитическую (1 % случаев), менингеальную (без параличей), абортивную (легкая форма). Заболевание на­чинается с повышения температуры тела, об­щего недомогания, головных болей, рвоты, болей в горле. Полиомиелит нередко имеет двухволновое течение, когда после легкой формы и наступившего значительного улуч­шения развивается тяжелая форма болезни. Паралитическую форму чаще вызывает вирус полиомиелита серотипа 1.

Иммунитет. После перенесенной болезни остается пожизненный типоспецифический иммунитет. Иммунитет определяется, в ос­новном, наличием вируснейтрализующих ан­тител, среди которых важная роль принадле­жит местным секреторным антителам слизис­той оболочки глотки и кишечника (местный иммунитет). Эффективный местный имму­нитет играет важнейшую роль в прерывании передачи «диких» вирусов и способствует вы­теснению их из циркуляции. Пассивный ес­тественный иммунитет сохраняется в течение 3-5 недель после рождения ребенка.

Микробиологическая диагностика. Материалом для исследования служат кал, отделяемое носог­лотки, при летальных исходах - кусочки го­ловного и спинного мозга, лимфатические узлы.

Вирусы полиомиелита выделяют путем за­ражения исследуемым материалом первич-


ных и перевиваемых культур клеток. О реп­родукции вирусов судят по цитопатическому действию. Идентифицируют (типируют) вы­деленный вирус с помощью типоспецифи-ческих сывороток в реакции нейтрализации в культуре клеток. Важное значение имеет внутривидовая дифференциация вирусов, ко­торая позволяет отличить «дикие» патоген­ные штаммы от вакцинных штаммов, выделя­ющихся от людей, иммунизированных живой полиомиелитной вакциной. Различия между «дикими» и вакцинными штаммами выявля­ют с помощью И ФА, реакции нейтрализации цитопатического действия вируса в культуре клеток со штаммоспецифической иммунной сывороткой, а также в ПЦР.

Серодиагностика основана на использова­нии парных сывороток больных с примене­нием эталонных штаммов вируса в качестве диагностикума. Содержание сывороточных иммуноглобулинов классов IgG, IgA, IgM оп­ределяют методом радиальной иммунодиф-фузии по Манчини.

Лечение. Патогенетическое. Применение гомологичного иммуноглобулина для пре­дупреждения развития паралитических форм весьма ограничено.

Эпидемиология и специфическая профилак­тика. Эпидемии полиомиелита охватывали в 1940-1950-х г.х тысячи и десятки тысяч че­ловек, из которых 10% умирали и пример­но 40 % становились инвалидами. Основной мерой профилактики полиомиелита является иммунизация. Массовое применение вакци­ны против полиомиелита привело к резкому снижению заболеваемости.

Первая инактивированная вакцина для про­филактики полиомиелита была разработана американским ученым Дж. Солком в 1953 г. Однако парентеральная вакцинация этим пре­паратом создавала лишь общий гуморальный иммунитет, не формировала местной резис­тентности слизистых оболочек ЖКТ и не обес­печивала надежной специфической защиты.

Естественно аттенуированные штаммы ви­русов полиомиелита всех трех типов получил в 1956 г. А. Сэбин, а в 1958 г. М. П. Чумаков и А. А. Смородинцев разработали первую перо-ральную живую культуральную вакцину из трех серотипов штаммов Сэбина. Вакцину исполь-


зуют для массовой иммунизации детей, она создает стойкий общий и местный иммунитет.

Всемирная организация здравоохранения в 1988 г приняла решение о глобальной ликви­дации полиомиелита путем охвата прививками всего детского населения планеты. Под ликви­дацией подразумевали прекращение заболева­ний и искоренение вируса полиомиелита.

Использование оральной полиовакцины приве­ло к практически полному исчезновению случаев полиомиелита в развитых странах Европы и в Америке и резкому снижению заболеваемости в развивающихся странах. В России случаи поли­омиелита не регистрируются с 1 июля 2002 г.

У живой полиомиелитной вакцины имеют­ся некоторые недостатки, наиболее серьезным из которых является возникновение случаев вакциноассоциированного полиомиелита у привитых и у контактных лиц, инфициро­ванных вирусами, выделяемыми привитыми детьми. Контактное инфицирование проис­ходит обычно вирусом одного серотипа.

Показано, что у иммунокомпетентных лиц отсутствует длительное носительство полиови-руса после вакцинации, в то время как у лиц с иммунодефицитами вакцинный штамм может выделяться в течение 7-10 лет. Риск развития вакциноассоциированного паралитического по­лиомиелита у лиц с иммунодефицитами, особен­но с нарушениями В-клеточного иммунитета, выше, чем риск у иммунокомпетентных лиц.

Неспецифическая профилактика сводится к санитарно-гигиеническим мероприятиям: обеспечение населения доброкачественными водой, пищевыми продуктами, соблюдение личной гигиены; выявление больных и подоз­рительных на заболевание.

17.1.1.1.2. Вирусы Коксаки А и В

Вирусы Коксаки Picornaviridae рода Enterovirus. Вирусы названы по населенному пункту в США, где они были впервые выделены. По патогенности для новорожденных мышей ви­русы разделены на группы А и В (29 сероти­пов): вирусы Коксаки А вызывают диффузный миозит и очаговый некроз поперечно-полоса­тых мышц; вирусы Коксаки В - поражение ЦНС, развитие параличей, некроз скелетной мускулатуры и - иногда - миокарда и др.


Вирусы Коксаки А вызывают у челове­ка герпангину (герпетиформные высыпания на задней стенке глотки, дисфагия, лихорад­ка), пузырчатку в полости рта и конечнос­тей, полиомиелитоподобные заболевания, диарею у детей; возможна сыпь.

Вирусы Коксаки В вызывают полиомие­литоподобные заболевания, энцефалит, мио­кардит, плевродинию (болезненные приступы в области груди, лихорадка, иногда плеврит).

Микробиологическая диагностика. Вирусо­логический метод: вирус выделяют из фекалий, отделяемого носоглотки, заражают культуры клеток HeLa или почек обезьян (Коксаки В, отдельные серотипы Коксаки А) или мышей-сосунков. Учитывают характер патологичес­ких изменений у зараженных мышей. Вирусы идентифицируют в РТГА, PC К, РН, ИФА.

17.1.1.1.3. Вирусы группы ECHO

Вирусы группы ECHO - РНК-содержащие вирусы семейства Picornaviridaepom Enterovirus; насчитывают более 30 типов. Вирусы ECHO (от англ. Enteric cytopathogenic human orphans virus­es - кишечные цитопатогенные человеческие вирусы-сироты) непатогенны для всех видов лабораторных животных. Вызывают ОРВИ, асептический менингит, полиомиелитоподоб­ные заболевания; возможна сыпь.

1) Вирусо­логический метод: вирус выделяют из це­реброспинальной жидкости, фекалий, отде­ляемого носоглотки; заражают культуры кле­ток почек обезьян. Вирусы идентифицируют в РТГА, РСК, РН, ИФА. 2) Серодиагностика: в сыворотке крови выявляют нарастание титра антител, используя РТГА, РСК, РН, ИФА.

17.1.1.2. Риновирусы

Риновирусы - РНК-содержащие виру­сы семейства Picornaviridae рода Rhinovirus. Последний представлен 2 видами, состоящи­ми из 100 серотипов, наиболее часто вызыва­ющих острые инфекции верхних дыхатель­ных путей (ОРВИ). Рецептором риновирусов является межклеточная адгезивная молекула I (ICAM-I), которая экспрессируется на эпи­телиальных клетках, фибробластах и эндоте-лиальных клетках. Риновирусы могут пере-


даваться двумя механизмами: аэрозольным и
контактно-бытовым. Проникают в организм
через нос, полость рта, конъюнктиву. Процесс
начинается в верхних дыхательных путях.
Микробиологическая диагностика.

1) Вирусологический метод: вирусы выделяют на культуре клеток, обнаруживают в РИФ.

2) Серологический метод: антитела выявляют в парных сыворотках крови пациента с помо­щью реакции нейтрализации.

17.1.1.3. Вирусы ящура

Вирусы ящура - РНК-содержащие вирусы се­мейства Picornaviridae рода Aphtovirus, состоящего из одного вида, представленного 7 серотипами. Вызывают ящур- зоонозную инфекционную болезнь, характеризующуюся лихорадочным состоянием, язвенными (афтозными) пораже­ниями слизистой оболочки рта, кожи кистей и стоп у человека. Вирусы ящура по морфологии и химическому составу сходны с другими пикор-навирусами. Обладают высокой вирулентностью и дерматотропностью.

Вирус может длительно (несколько недель) выживать в объектах окружающей среды, в пищевых продуктах; чувствителен к дезин-фектантам. Естественным резервуаром вируса служат больные животные, особенно крупный рогатый скот. От больных животных вирус выделяется с молоком, со слюной и мочой. Человек заражается при уходе за больными животными, а также при употреблении сыро­го молока и молочных продуктов.

Восприимчивость человека к ящуру невысокая.

Микробиологическая диагностика. 1) Вирус выявляют в содержимом афт, слюне и крови путем заражения морских свинок, мышей-со­сунков или культур клеток. 2) Для серодиаг­ностики исследуют парные сыворотки крови в РСК, РН, РПГА, ИФА.

Профилактика. Профилактика ящура у че­ловека - неспецифическая.

17.1.1.4. Вирус гепатита А

Вирусные гепатиты наносят огромный ущерб здоровью населения и экономике всех стран мира. Они подразделяются на энтераль-ные - гепатиты А и Е и парентеральные - ге­патиты В, С, D, F, G и др. Вирусы паренте­ральных гепатитов описаны в гл. 17.6.


Вирус гепатита А вызывает острую инфек­ционную болезнь, характеризующуюся ли­хорадкой, преимущественным поражением печени, интоксикацией, иногда желтухой и отличающуюся склонностью к эпидемичес­кому распространению. Антропоноз.

Заболевание (под другими названиями) из­вестно с глубокой древности и описано еще Гиппократом в IV-V вв. до н. э. Вирус гепати­та А открыт в 1973 г С. Фейнстоном.

Таксономия, морфология и антигенная струк­тура. Вирус гепатита А относится к семейству Picornaviridae роду Hepatovirus. Типовой вид - вирус гепатита А - имеет один серотип. Это РНК-содержащий вирус, просто организо­ванный, имеет диаметр 27-28 нм и один ви-русоспецифический антиген.

Культивирование. Вирус выращивают в культурах клеток. Цикл репродукции более длительный, чем у энтеровирусов, цитопати-ческий эффект не выражен.

Резистентность. Вирус гепатита А отличает­ся большей, чем у энтеровирусов, устойчивос­тью к нагреванию; он сохраняется при 60 °С в течение 12 ч, инактивируется при кипячении в течение 5 мин. Относительно устойчив во внешней среде (воде, выделениях больных).

Восприимчивость животных. Эксперимен­тальную инфекцию возможно воспроизвести на обезьянах мармозетах и шимпанзе.

Эпидемиология. Источником инфекции являются больные как с выраженными, так и с бессимптомными формами инфекции. Механизм заражения - фекально-оральный. Вирусы выделяются с фекалиями начиная со второй половины инкубационного периода и в начале клинических проявлений: в это время больные наиболее опасны для окру­жающих. С появлением желтухи интенсив­ность выделения вирусов снижается. Вирусы гепатита А передаются через воду, пищевые продукты, предметы обихода, грязные руки; в детских коллективах - через игрушки, гор­шки. Вирусы способны вызывать водные и пищевые эпидемические вспышки.

Гепатит А распространен повсеместно, но особенно в местах с дефицитом воды, пло­хими системами канализации и водоснабже­ния и низким уровнем гигиены населения.


Болеют преимущественно дети в возрасте от 4 до 15 лет. Подъем заболеваемости наблюдает­ся в летние и осенние месяцы.

Патогенез. Вирус гепатита А обладает гепа-тотропизмом. После заражения репликация вирусов происходит в кишечнике, а оттуда че­рез портальную вену они проникают в печень и реплицируются в цитоплазме гепатоцитов. Повреждение гепатоцитов возникает не за счет прямого цитотоксического действия, а в ре­зультате иммунопатологических механизмов.

Клиника. Инкубационный период состав­ляет от 15 до 50 дней, чаще около месяца. Начало острое, с повышением температуры и явлениями со стороны ЖКТ (тошнота, рвота и др.). Возможно появление желтухи на 5-7-й день. Клиническое течение заболевания, как правило, легкое, без особых осложнений; у детей до 5 лет - обычно бессимптомное. Продолжительность заболевания 2-3 недели. Хронические формы не развиваются.

Иммунитет. После инфекции формируется стойкий пожизненный иммунитет, связан­ный с IgG. В начале заболевания в крови появляются IgM, которые сохраняются в ор­ганизме в течение 4-6 месяцев и имеют диа­гностическое значение. У детей первого года жизни обнаруживаются антитела, получен­ные от матери через плаценту. Помимо гумо­рального, развивается и местный иммунитет в кишечнике.

Микробиологическая диагностика. Материа­лом для исследования служат сыворотка и испражнения. Диагностика основана глав­ным образом на определении в крови IgM с помощью ИФА, РИА и иммунной электрон­ной микроскопии. Этими же методами можно обнаружить вирусный антиген в фекалиях. Вирусологическое исследование не прово­дят из-за отсутствия методов, доступных для практических лабораторий.

Лечение. Симптоматическое.

Профилактика. Неспецифическая профи­лактика должна быть направлена на повыше­ние санитарной культуры населения, улучше­ние водоснабжения и условий приготовления пищи.

Для специфической пассивной профилак­тики используют иммуноглобулин по эпид-показаниям. Иммунитет сохраняется около 3


месяцев. Для специфической активной про­филактики разработана и применяется ина-ктивированная культуральная концентриро­ванная вакцина. Разработана также рекомби-нантная генно-инженерная вакцина.

17.1.2. Реовирусы (семейство Reoviridae)

Реовирусы (семейство Reoviridae) - семейство безоболочечных вирусов, содержащих лвуните-вую фрагментированную РНК; включает респи­раторные и кишечные вирусы, а также некоторые арбовирусы. Название семейства произошло от первых букв англ. слов: respiratory, enteric, orphan viruses. Семейство содержит 4 рода: Orthoreovirus, Orbivirus, Colfivirus, Rotavirus.

Род Orthoreovirus представлен вирусами трех серотипов. Они широко распространены, вы­деляясь от людей, млекопитающих в норме или при желудочно-кишечных и респиратор­ных инфекциях. Род Orbivirus получил свое на­звание из-за кольцевидной формы капсомеров вирионов (лат. orbis - кольцо). Род Orbivirus включает возбудителей арбовирусной инфек­ции: вирус Кемерово (переносится клешами, вызывает кемеровскую лихорадку) и вирус си­него языка овец (переносится мокрецами). Род Colfivirus включает вирус колорадской кле­щевой лихорадки, вызывающий арбовирус-ную инфекцию (переносится клещами). Род Rotavirus содержит вирусы, вызывающие рас­пространенные диареи (табл. 17.1).

Структура реовирусов. Вирионы реовирусов имеют сферическую форму (диаметр 70-85нм), двухслойный капсид икосаэдрического типа; оболочки нет (рис. 17.3). Геном представлен двунитевой фрагментированной (10-12 сегмен­тов) линейной РНК. Вирион содержит фермент транскриптазу (РНК-зависимую РНК-полиме-разу). Внутренний капсид и геномная РНК составляют сердцевину вириона. Внутренний капсид реовирусов содержит систему транс-


крипции; белки лямбда-1, лямбда-3, мю-2. От сердцевины отходят шипы, представленные белком лямбда-2. У ротавирусов внутренний капсид включает белки VP-1, VP-2, VP-3, VP-6.

Наружный капсид реовирусов состоит из белков сигма-1, сигма-3, мю-1с, а также бел­ков лямбда-2, отходящих от сердцевины и выступающих в виде шипов. Белок сигма-1 является гемагглютинином и прикрепитель­ным белком. Белок мю-1с определяет способ­ность реовирусов заражать клетки кишечника и впоследствии поражать ЦНС.

У ротавирусов наружный капсид включает белки VP-4 (шипы, выступающие на поверх­ности вириона, являющиеся гемагглютинином и прикрепительным белком) и VP-7 - основ­ной компонент наружного капсида, являющий­ся типоспецифическим антигеном. Ротавирусы и ортореовирусы активизируются протеолизом (инфекционные субвирусные частицы) с уве­личением их инвазионной способности.

Репродукция. Вирионы реовирусов могут адсор­бироваться (с помощью белка сигма-1) на клетке и проникать рецептор-опосредованным эндоцитозом в цитоплазму, где под влиянием ферментов лизосом про­исходит частичная депротеинизация - разрушение на­ружного капсида с образованием субвирусных частиц.



Возможно проникновение вирусов в клетку другим механизмом, например инфекционных субвирусных частиц, не содержащих белка сигма-1. Инфекционные субвирусные частицы ротавирусов проникают через клеточную мембрану (механизм проникновения не­известен) и освобождают сердцевину в цитоплазме, а ферменты сердцевины инициируют продукцию иРНК. С каждого фрагмента геномной РНК считывается ин­дивидуальная и РНК. Транскрипция генома проходит в две фазы (ранняя и поздняя). Минус-нить РНК ис­пользуется как матрица. Сборка вирионов происходит в цитоплазме. Вирусы выходят при лизисе клетки.

Микробиологическая диагностика. Диаг­ностика арбовирусных инфекций, вызываемых отдельными представителями реовирусов, про­водится с помощью вирусологического и серо­логического методов: заражают культуру кле­ток или мышей-сосунков (интрацеребрально); с помощью PC К, РПГА, РН выявляют антитела в парных сыворотках крови больного.

Диагностику ротавирусной инфекции см. ниже.

17.1.2.1. Ротавирусы (род Rotavirus)

Ротавирусы человека вызывают острый энтерит новорожденных и детей раннего возраста. Они являются РНК-содержащими вирусами семейства Reoviridaepona Rotavirus. I Свое название получили из-за строения ви-риона (лат. rota - колесо).


Структура ротавирусов. Вирион ротавиру­сов сферический (диаметр 70 нм), содержит двунитевую фрагментированную (11 сегмен­тов) РНК. Двухслойный капсид (наружный и внутренний) имеет форму колеса с отхо­дящими внутрь «спицами». Вирион имеет 8 белков. Внутренний капсид включает белки VP-1, VP-2, VP-3, VP-6. Наружный капсид включает: 1) белки VP-4 (шипы, выступаю­щие на вирионе, являющиеся гемагглюти-нином и прикрепительным белком); 2) белок VP-7 - основной компонент наружного кап-сида (типоспецифический антиген). Имеются неструктурные белки: NSP1, NSP2, NSP3, NSP4, NSP5, NSP5A. По антигенной структу­ре различают 6 серогрупп (A-F) и 4 серовара ротавирусов.

Репродукция (рис. 17.4). Вирионы могут проникать рецептор-опосредованным эн-доцитозом в клетку (1), где под влиянием ферментов лизосом происходит частичная депротеинизация - разрушение наружного капсида с образованием субвирусных частиц. Однако это «тупик» для ротавирусов. Другой механизм проникновения заключается в том, что вирионы ротавирусов активируются про-теазами (например, в ЖКТ), превращаясь в инфекционные субвирусные частицы, кото­рые пенетрируют клеточную мембрану (2) и в цитоплазме утрачивают наружный капсид


(под действием лизосом), освобождая сердце­вину (3). Ферменты сердцевины инициируют продукцию иРНК, используя в качестве мат­рицы минус-нить РНК. Белки VP-7 и NS28 синтезируются как гликопротеины и экспрес-сируются в эндоплазматическом ретикулуме (4). Плюс-РНК является иРНК. Она включе­на внутрь капсидов как матрица для реплика­ции +/- сегментированного генома. Капсиды ротавирусов агрегируют (5), связываются с белком NS28 в эндоплазматическом ретику­луме и приобретают белок VP-7 наружного капсида. Вирусы выходят при лизисе клетки.

Источник инфекции - больные или вирусо-носители, выделяющие ротавирусы с калом (фекально-оральный механизм передачи). Пути передачи - водный (основной), пи­щевой, контактно-бытовой. Инкубационный период 1-3 дня. Ротавирусы распростране­ны повсеместно, вызывают гастроэнтериты, главным образом у детей (часто в возрасте от 6 месяцев до 2 лет); являются причиной смерти около миллиона людей из-за диа­реи. Размножаются в эпителиоцитах двенад­цатиперстной кишки, вызывая их гибель. Заболевание протекает с рвотой, болями в животе и диареей в течение 1 -2 суток. Частота стула 10-15 раз в сутки.

Микробиологическая диагностика. 1) Вирус обнаруживают в фильтрате фекалиий с помо­щью иммунной электронной микроскопии, ИФА, иммунодиффузионной преципитации в агаре, РСК, РН, РИФ, реакции ко-агглю-тинации, клонированных РНК-зондов. 2) Серологический метод: в сыворотке крови определяют нарастание титра антител с помо­щью ИФА, РСК, РПГА, РН, РИФ.

Лечение. Симптоматическое.

Профилактика. Основой неспецифической профилактики является соблюдение санитар­но-гигиенических правил, санитарных норм водоснабжения и канализации. Специфическая профилактика заключается в применении вак­цин; разработана живая вакцина.

17.1.3. Буньявирусы (семейство Bunyaviridae)

Таксономия и классификация. Семейство Bunyaviridae насчитывает более 250 серотипов ви-


русов, входящих в состав пяти родов: Bunyavirus, Phlebovirus, Nairovirus, Hantavirus, Tospovirus. Типовыми вирусами данных родов являются: вирус Буньямвера, вирус москитной лихорадки Сицилия, вирус болезни овец Найроби и вирус Хантаан соответственно. Тосповирусы непато­генны для человека и поражают растения.

Прототипом вирусов данного семейства яв­ляется впервые выделенный в Центральной Африке и переносимый комарами вирус Буньямвера. Название вируса дано по мест­ности Буньямвера в Уганде.

Морфология. Вирионы имеют овальную или сферическую форму, диаметр 80-120 нм. При электронной микроскопии напоминают пон­чик. Это сложные РНК-геномные вирусы, содержащие три внутренних нуклеокапсида со спиральным типом симметрии. Каждый нуклеокапсид состоит из нуклеокапсидного белка N, уникальной одноцепочечной минус-РНК и фермента транскриптазы (РНК-зави­симой РНК-полимеразы). Три сегмента РНК, связанные с нуклеокапсидом, обозначают по размерам: L (long) - большой, М (me­dium) - средний и S (short) - малый. РНК не обладает инфекционной активностью. В отличие от других вирусов с минус-РНК геномом (Orthomixoviridae, Paramixoviridae и Rhabdoviridae) , буньявирусы не содержат М-белка, поэтому они более пластичны. Сердцевина вириона, содержащая рибонукле-опротеин (РНП), окружена липопротеидной оболочкой, на поверхности которой находят­ся шипы - гликопротеины G1 и G2, которые кодируются М-сегментом РНК.

Антигены. Белок N является носителем группоспецифических свойств и выявляется в РСК. Гликопротеины (G1 и G2) - типос-пецифические антигены, выявляемые в РН и РТГА. Это протективные антигены, обуслав­ливающие гемагглютинирующие свойства, которые у буньявирусов не столь выражены, как у ортомиксо- и парамиксовирусов. Они индуцируют образование вируснейтрализу-ющих антител. Гликопротеины - основные детерминанты патогенности, обуславливаю­щие клеточную органотропность вирусов и эффективность их передачи членистоногими.

На основании анализа перекрестного свя­зывания в РСК буньявирусы объединяют в


роды, внутри которых, на основании пере­крестной РН и РТГА, они распределяются по серогруппам.

Репродукция буньявирусов. Репродукция бу-ньявирусов происходит в цитоплазме клетки, где сначала формируются РНП. При этом образуется три вида иРНК, каждая из ко­торых кодирует соответствующий полипеп­тид - L, N и предшественники белков G1 и G2. Вирусные белки в инфицированной клетке синтезируются быстро. Так, белок N можно выявить уже через 2 ч, a G1 и G2 - че­рез 4 и 6-8 ч соответственно. Созревание вирусов (приобретение внешней липидсодер-жащей оболочки) в результате почкования РНП, в отличие от других вирусов, происхо­дит не на плазматических мембранах клетки, а при прохождении через стенки везикул в области аппарата Гольджи. В последующем вирусные частицы транспортируются к плаз-молемме (клеточной мембране). Выход ви­русных частиц происходит путем экзоцитоза, а иногда- лизиса клетки. Буньявирусы, как и другие представители арбовирусов, облада­ют способностью размножаться в двух тем­пературных режимах: 36-40 и 22-25 °С, что позволяет им репродуцироваться не только в организме позвоночных, но и в организме пе­реносчиков - кровососущих членистоногих насекомых.

Устойчивость вирусов к действию физических и химических факторов. Буньявирусы чувстви­тельны к действию эфира и детергентов, ина-ктивируются при прогревании при темпера­туре 56 °С в течение 30 мин и почти мгновен­но при кипячении, но длительно сохраняют инфекционную активность при заморажива­нии. Буньявирусы стабильны в весьма огра­ниченном диапазоне значений рН - 6,0-9,0, инактивируются обычно применяемыми де­зинфицирующими средствами.

Особенности культивирования буньявирусов и восприимчивость к ним лабораторных жи­вотных. К буньявирусам восприимчивы но­ворожденные белые мыши, белые крысы и хомячки при заражении в головной мозг. Для культивирования вирусов применяют культу­ры клеток из переносчиков, почки эмбрионов человека, ВНК-21, фибробласты куриного эмбриона, где они не оказывают выраженно-


го ЦПД. Вирусы можно культивировать в ку­риных эмбрионах. Универсальной моделью для выделения арбовирусов является заражение новорожденных белых мышей, у которых они вызывают развитие энцефалита, заканчиваю­щегося летально.

Эпидемиология, патогенез и клиника. Бунья­вирусы широко распространены на всех кон­тинентах, а вызываемые ими заболевания имеют природную очаговость. Большая часть вирусов данного семейства относится к эко­логической группе арбовирусов (от англ. ar­thropod-borne viruses - вирусы, рожденные или передаваемые членистоногими), так как они передаются кровососущими членистоногими насекомыми. Последние являются не только их переносчиками, но также основным ре­зервуаром и постоянными хозяевами данных вирусов в природных очагах. Большинство буньявирусов передается комарами. Описана вертикальная (трансовариальная) и трансфа­зовая (от личинки к нимфе и имаго) передача буньявирусов в определенных членистоногих переносчиках. Выделение вирусов в течение зимы и весны из яиц, личинок и нимф кома­ров показывает, что вирусы зимуют в природе in ovo. Найровирусы большей частью пере­даются клещами, а флебовирусы - москита­ми и комарами. Некоторые флебовирусы и буньявирусы могут передаваться мокрецами Culicoides.

Для заболеваний, вызванных данными ви­русами, характерна сезонность, обусловлен­ная изменением активности переносчиков. На территории России основное значение имеют клещи. Позвоночными хозяевами дан­ных вирусов являются грызуны, птицы, зай­цеобразные, жвачные животные, приматы. Заражение человека может происходить не только трансмиссивно через укусы кровосо­сущих членистоногих насекомых, но и при контакте с больными людьми в результате попадания на поврежденную кожу и слизис­тые оболочки крови, а также биологических выделений, содержащих вирус.

Вирусы рода Хантаан составляют исключе­ние из правила в данном семействе, так как их основными хозяевами являются грызуны. Вместе с аренавирусами и филовирусами они выделены в экологическую группу нетранс-


миссивных геморрагических лихорадок или робовирусов (от англ. rodent-borne viruses - вирусы, рожденные грызунами). Никаких свидетельств участия в их передаче членисто­ногих не обнаружено.

Чаще всего вирусы данного семейства вы­зывают развитие бессимптомной инфекции, которая выявляется при проведении сероло­гических исследований. Большинство из них вызывает лихорадочные заболевания, некото­рые геморрагические лихорадки (Крым-Конго и с почечным синдромом - ГЛПС) и энцефа­литы (калифорнийский энцефалит).

Наибольшее медицинское значение име­ют: вирус калифорнийского энцефалита и входящий в состав комплекса вирусов кали­форнийского энцефалита вирус Тягиня (род Bunjavirus); вирусы москитной лихорадки Сицилия, Неаполь и Рифт-валли. которая имеет большое значение в ветеринарии (рол Phlehovirus); вирус геморрагической лихо­радки Крым-Конго (род Nairovirus) и виру­сы геморрагической лихорадки с почечным синдромом (род Hantavirus). Наиболее пато­генны для человека: вирус лихорадки Рифт-валли, Крым-Конго и вирусы ГЛПС.

После перенесенных заболеваний остается стойкий иммунитет.

Микробиологическаядиагностика. Лаборатор­ная диагностика буньявирусных инфекций основана на выделении вирусов и обнаружении антител к ним в парных сыворотках крови. Так как вирусы данного семейства относятся к возбудителям особо опасных инфекций (вторая группа патогенности), выделение их может проводиться лишь в режимных лабораториях. Материалом для исследования служат кровь, взятая в остром периоде заболевания (при москитных лихорадках не позже 24-48 ч от начала заболевания), или кусочки тканей и органов (мозга, печени, селезенки, легких и почек), полученные на аутопсии. Вирус мо­жет быть выявлен в организме кровососущих членистоногих переносчиков и во внутренних органах погибших инфицированных живот­ных. Чаще всего буньявирусы выделяют на новорожденных белых мышах, а также на белых крысах и хомяках при интрацеребраль-


ном заражении. Индикация вирусов прово­дится на основании развития заболевания и гибели животных. Проводят также заражение культур клеток с последующей индикацией в РИФ, так как для буньявирусов не характер­но развитие выраженного цитопатогенного действия. Идентификация вирусов проводит­ся в РН на мышах-сосунках, в РСК, РТГА, реакции иммунодиффузии, РИГА, а также с помощью РИФ, ИФА и РИА. Для постановки РИФ и ИФА используют моноклональные антитела, которые получены практически ко всем представителям арбо- и зоонозных ви­русов. Из молекулярно-генетических методов диагностики и идентификации применяют: молекулярную гибридизацию нуклеиновых кислот и ПЦР.

Лечение и профилактика. Препараты для специфического лечения не разработаны. В ряде случаев применяют иммунные сыворот­ки переболевших лиц, рибавирин, интерфе­рон (реаферон). Профилактика основана на защите от комаров, клещей и других кровосо­сущих насекомых. Для создания искусствен­ного активного приобретенного иммунитета применяют убитые вакцины.

17.1.3.1. Вирусы комплекса калифорнийского энцефалита

Вирусы комплекса калифорнийского эн­цефалита относятся к роду Bunjavirus. Из 12 представителей вирусов комплекса калифор­нийского энцефалита 10 вирусов распростра­нено в Америке, один (Тягиня) в Евразии и Африке и один (Инко) в Северной Европе. Из американских представителей комплекса зна­чение в патологии человека установлено для вирусов калифорнийского энцефалита, Ла-Кросс, Джеймстаун-каньон и зайцев беляков.

Вирус калифорнийского энцефалита выделен в 1943 г. в Калифорнии от комаров С. tarsalis, а затем в других штатах, а также в Манитобе (Канада).

Вирусы данного рода вызывают лихорадки (Тягиня, Инко, Гуароа и т.д.) и энцефалиты (энцефалит Джеймстаун-каньон, калифор­нийский энцефалит, энцефалит Ла-Кросс и зайцев-беляков). Переносчиком вирусов ком­плекса калифорнийского энцефалита являют­ся комары (С. tarsalis, A. melanimon, A. dorsalis,


A. vexans, A. nigromaculis, Psorophora signipen-nis, Culiseta inomata и др.), для которых харак­терна не только трансовариальная, но и вене­рическая передача. Резервуаром и источником вирусов являются комары и грызуны.

Основная заболеваемость, вызванная виру­сами комплекса калифорнийского энцефали­та, связана с вирусом Ла-Кросс, эндемичным в 20 штатах США.

Вирус Ла-Кросс. Изолирован от многих видов ко­маров, а также от слепней Hybomitra lasiophthalma. Однако основным его переносчиком следует считать выплаживающийся в дуплах деревьев A. triseriatus. У комаров установлена не только трансовариальная, но и алиментарная передача (у личинок). Вирус изолирован от кроликов, белок и бурундуков. Функционирование горизонтальной и вертикальной передачи вируса обеспечивает активную циркуляцию вируса, высо­кую зараженность комаров и стойкость природных очагов в относительно суровых Центральных частях умеренного пояса. Механизм заражения трансмиссив­ный. Инкубационный период- от 5 до 8-15 дней. Клиническая картина варьирует от общелихорадочного синдрома (в ряде случаев с фарингитом и другими по­ражениями верхних дыхательных путей) до энцефалита. Летальность 0,05-2 %. После перенесенного заболева­ния остается напряженный гуморальный иммунитет.

Вирус лихорадки Тягиня. Вызывает заболева­ния на территории Европейской части России, включая Заполярье, а также в Сибири и на Дальнем Востоке. Он изолирован из 13 видов комаров. Резервуаром и источником вируса в природе являются комары, а также мно­гие виды млекопитающих, лесные грызуны, зайцы-русаки, ежи, кабаны, лисы, косули, возможно белки и ондатры. Из домашних и сельскохозяйственных животных играют роль кролики, свиньи, крупный рогатый скот, со­баки, лошади. Механизм заражения трансмис­сивный. Основной переносчик- A. vexans. Инкубационный период 2-13 дней. У чело­века лихорадка Тягиня может протекать как гриппоподобное заболевание, фарингит, брон­хопневмония, лихорадка с желудочно-кишеч­ными симптомами и асептическим менинги­том. Случаев с летальным исходом и тяжелыми последствиями не отмечено. Перенесенное за­болевание оставляет напряженный гумораль­ный иммунитет. Диагностика основана на изо­ляции вируса из крови и цереброспинальной


жидкости путем интрацеребрального зараже­ния новорожденных белых мышей, а также заражения культур клеток и обнаружении ан­тител в парных сыворотках с помощью РСК, РТГА, РИГА и РНИФ. Большое значение име­ет обнаружение IgM в сыворотке крови или цереброспинальной жидкости к вирусам с по­мощью ИФА. Препараты для специфического лечения и профилактики не разработаны.

Из нескольких сотен известных в настоящее время вирусов человека и животных РНК-геном содержит около 80% вирусов. Способность РНК хранить наследственную информацию является уникальной особенностью вируса.


У просто организованных и некоторых сложно органи-зованных вирусов вирусная РНК в отсутствие белка мож^т вызвать инфекционный процесс. Впервые инфекционная активность РНК вируса табачной мозаики была продемон-^ стрирована X. Френкель-Конратом и соавт. в. и А. Гирером и Г. Шраммом в. Впоследствии положение об инфекционной активности РНК было пере-несено на все РНК-содержащие вирусы, однако долголет-ние усилия доказать это для таких вирусов, как вирусы гриппа, парамиксовирусы, рабдовирусы (так называемые минус-нитевые вирусы), оказались бесплодными: у этих ви-русов инфекционной структурой являются не РНК, а комплекс РНК с внутренними белками. Таким образом, геномная РНК может обладать инфекционной активно-стью в зависимости от своей структуры.


Структура вирусных РНК чрезвычайно разнообразна. У вирусов обнаружены однонитчатые и двунитчатые, ли-нейные, фрагментированные и кольцевые РНК (см. табл. 2). РНК-геном в основном является гаплоидным, Ж) геном ретровирусов - диплоидный, т. е. состоит из двух идентичных молекул РНК.


Однонитчатые РНК. Молекулы однонитчатых вирусных РНК существуют в форме одиночной полинуклеотидной цепи со спирализованными ДНК-подобными участками. При этом некомплементарные нуклеотиды, разделяющие комплементарные участки, могут выводиться из состава спирализованных участков в форме различных «петель» и «выступов» (рис. 2). Суммарный процент спирализации вирусных РНК не обнаруживает каких-либо особенностей по сравнению с таковыми у клеточных РНК.




(1971), РНК со свойствами информационной условно обозначена знаком «плюс» и в связи с этим вирусы, со-держащие такие РНК (пикорнавирусы, тогавирусы, коро-навирусы, ретровирусы), обозначены как «плюс-нитевые» вирусы, или вирусы с позитивным геномом.


Вторая группа РНК-содержащих вирусов содержит ге-ном в виде однонитчатой РНК, которая сама не обладает функциями иРНК. В этом случае функцию иРНК выпол-няет РНК, комплементарная геному. Синтез этой РНК (транскрипция) осуществляется в зараженной клетке на матрице геномной РНК с помощью вирусспецифиче-ского фермента - транскриптазы. В составе «минус-ните-вых» вирусов обязательно присутствие собственного фер-мента, осуществляющего транскрипцию геномной РНК и синтез иРНК, так как аналога такого фермента в клетках нет. Геном этих вирусов условно обозначают как «минуса-РНК, а вирусы этой группы как «минус-нитевые» вирусы, или вирусы с негативным геномом. К этим вирусам отно-сятся ортомиксовирусы, парамиксовирусы, буньявирусы, рабдовирусы. РНК этих вирусов не способна вызвать инфекционный процесс.


В соответствии с разными свойствами вирусных РНК между двумя группами вирусов есть и структурные разли-чия. Поскольку РНК «плюс-нитевых» вирусов выполняет функцию иРНК, она имеет специфические структурные особенности, характерные для 5"- и З"-концов этих РНК.



где т 7 0 представляет собой 7-метилгуанин, присоединен-ный через пирофосфатную связь к гуаниловому нуклео-тиду, сахарный остаток которого также метилирован по второму углеродному атому. На З"-конце информационных РНК имеются поли (А), количество которых достигает 200 и выше. Эти модификации концов иРНК, осуществляе-мые после синтеза полинуклеотидной цепи, имеют сущест-венное значение для функции иРНК: «шапочка» нужна для специфического узнавания иРНК рибосомами, функ-ции поли (А) менее точно определены и, по-видимому, заключаются в придании стабильности молекулам иРНК.


Такими же модифицированными концами обладают ге-номные РНК «плюс-нитевых» вирусов. Исключение со-ставляет 5"-конец геномной РНК вируса полиомиелита, которая не содержит «шапочку», и вместо нее имеет на 5"-конце ковалентно присоединенный к остатку урацила низкомолекулярный терминальный белок. Геномные РНК «минус-нитевых» вирусов не имеют ни «шапочки», ни по-ли (А); модифицированные концы характерны для иРНК этих вирусов, синтезирующихся в клетке на матрице ви-рионной РНК и комплементарных ей. Геномная РНК, ретровирусов, хотя и является «плюс-нитевой», однако не содержит «шапочку»; эту структуру содержит гомологич-ная РНК, синтезируемая на матрице интегрированной про-вирусной ДНК.


Существуют вирусы, содержащие как «плюс-нитевые», так и «минус-нитевые» РНК гены (амбисенс-вирусы). К ним относятся аренавирусы.


В основном однонитчатые РНК являются линейными молекулами, однако РНК-фрагменты буньявирусов обна-ружены в виде кольцевой формы. Кольцевая форма воз-никает за счет образования водородных связей между концами молекул.


Двунитчатые РНК. Этот необычный для клетки тип нуклеиновой кислоты, впервые обнаруженный у реовиру-сов, широко распространен среди вирусов животных, растений и бактерий. Вирусы, содержащие подобный геном, называют диплорнавирусы.


Общей особенностью диплорнавирусов является фраг-ментированное состояние генома. Так, геном реовирусов


состоит из 10 фрагментов, ротавирусов - из 11 фрагмен-тов.


Размеры РНК ряда вирусов животных приведены в табл. 4. Как видно, молекулярная масса РНК варьирует в широких пределах.