Репликация рнк вирусов. Репликация нуклеиновых кислот

Генетическую информацию, закодированную в отдельном гене, в общем можно рассматривать как инструкцию по производству определенного белка в клетке. Такая инструкция воспринимается клеткой только в том случае, если она послана в виде мРНК. Поэтому клетки, у которых генетический материал представлен ДНК, должны «переписать» (транскрибировать) эту информацию в комплементарную копию мРНК. ДНК-содержащие вирусы по способу репликации отличаются от РНК-содержащих вирусов.

ДНК обычно существует в виде двухцепочечных структур: две полинуклеотидные цепочки соединены водородными связями и закручены таким образом, что образуется двойная спираль. РНК, напротив, обычно существует в виде одноцепочечных структур. Однако геном отдельных вирусов представляет собой одноцепочечную ДНК или двухцепочечную РНК. Нити (цепочки) вирусной нуклеиновой кислоты, двойные или одинарные, могут иметь линейную форму или замыкаться в кольцо.

Первый этап репликации вирусов связан с проникновением вирусной нуклеиновой кислоты в клетку организма-хозяина. Этому процессу могут способствовать специальные ферменты, входящие в состав капсида или внешней оболочки вириона, причем оболочка остается снаружи клетки или вирион теряет ее сразу после проникновения внутрь клетки. Вирус находит подходящую для его размножения клетку, контактируя отдельными участками своего капсида (или внешней оболочки) со специфическими рецепторами на поверхности клетки по типу «ключ – замок». Если специфические («узнающие») рецепторы на поверхности клетки отсутствуют, то клетка не чувствительна к вирусной инфекции: вирус в нее не проникает.

Для того чтобы реализовать свою генетическую информацию, проникшая в клетку вирусная ДНК транскрибируется специальными ферментами в мРНК. Образовавшаяся мРНК перемещается к клеточным «фабрикам» синтеза белка – рибосомам, где она заменяет клеточные «послания» собственными «инструкциями» и транслируется (прочитывается), в результате чего синтезируются вирусные белки. Сама же вирусная ДНК многократно удваивается (дуплицируется) при участии другого набора ферментов, как вирусных, так и принадлежащих клетке.

Синтезированный белок, который используется для строительства капсида, и размноженная во многих копиях вирусная ДНК объединяются и формируют новые, «дочерние» вирионы. Сформированное вирусное потомство покидает использованную клетку и заражает новые: цикл репродукции вируса повторяется. Некоторые вирусы во время отпочковывания от поверхности клетки захватывают часть клеточной мембраны, в которую «заблаговременно» встроились вирусные белки, и таким образом приобретают оболочку. Что касается клетки-хозяина, то она в итоге оказывается поврежденной или даже полностью разрушенной. У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь – запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы.

У некоторых РНК-содержащих вирусов геном (РНК) может непосредственно выполнять роль мРНК. Однако эта особенность характерна только для вирусов с «+» нитью РНК (т.е. с РНК, имеющей положительную полярность). У вирусов с «» нитью РНК последняя должна сначала «переписаться» в «+» нить; только после этого начинается синтез вирусных белков и происходит репликация вируса.

Так называемые ретровирусы содержат в качестве генома РНК и имеют необычный способ транскрипции генетического материала: вместо транскрипции ДНК в РНК, как это происходит в клетке и характерно для ДНК-содержащих вирусов, их РНК транскрибируется в ДНК. Двухцепочечная ДНК вируса затем встраивается в хромосомную ДНК клетки. На матрице такой вирусной ДНК синтезируется новая вирусная РНК, которая, как и другие, определяет синтез вирусных белков.

Вирусы содержат лишь один вид нуклеиновых кислот – ДНК или РНК. Вирусная ДНК может быть одно- или двухцепочечной и иметь линейную или кольцевую форму. Вирусные нуклеиновые кислоты кодируют специфические для вирусов белки и ферменты, необходимые для репликации вируса в клетке хозяина.

Репликация ДНК-содержащих вирусов идет по общему для всех ДНК полуконсервативному механизму. На матрице вирусной ДНК сначала синтезируется мРНК, а дальше идет образование вирусных белков. Этот процесс полностью обеспечивается метаболическим аппаратом клетки-хозяина.

Репликация РНК-содержащих вирусов происходит двумя путями.

Первый идет при участии РНК-зависимой РНК-полимеразы (РНК-синтазы или РНК- репликазы). Он присущ вирусам гриппа, кори. Различают вирусы:

  • содержащие (+) - РНК цепь (плюс-цепь), которая служит как мРНК, так и геномом, и вирусы,
  • содержащие (-) РНК цепь (минус-цепь), которая служит лишь геномом.

Существуют также вирусы, которые содержат двухцепочечную РНК.

  1. (+)-РНК цепь вируса может непосредственно использоваться в трансляции в качестве мРНК. Поэтому, когда в клетку попадает (+) -РНК вирус (вирус полимиолиту, гепатита А), его РНК связывается с рибосомами клетки и транслируется в белковую цепь. Эта цепь разрывается протеазой вирусной частицы на 7 белков, один из - РНК-синтаза. После появления РНК-синтазы начинается репликация вирусной РНК. На первом этапе на (+) -цепи как на матрице образуется (-) цепь РНК, а на втором этапе (-) -цепь служит матрицей для синтеза (+) цепей РНК, идентичных вирусной.
  2. Рабдовирусы (вирусы бешенства, Эбола, Марбурга) и парамиксовирусы (вирусы парагриппа, кори, паротита) имеют (-) -цепь РНК, которая не может прямо транслироваться в белок. Вместо трансляции эта (-) -РНК используется как матрица для транскрипции (+) -РНК. Транскрипция осуществляется РНК- синтазой, которая присутствует в вирусной частице. Синтезированная вирусная (+) -РНК дальше используется как матрица для рибосомального синтеза вирусных белков и как матрица для синтеза (репликации) (-) -цепи РНК идентичной вирусной.
  3. (+-)-РНК (двухцепочечную РНК) имеют реовирусы, вызывающие респираторные инфекции. Принцип репродукции этих вирусов такой же как репликация двуцепочечной ДНК, но вместо ДНК-полимеразы функционирует РНК- полимераза (РНК-синтаза).

Второй путь идет при участии обратной транскриптазы (РНК-зависимой ДНК-полимеразы, ревертазы). Он присущ ретровирусам (вирус иммунодефицита) и части онкогенных вирусов. Фермент катализирует последовательно три процесса:

  • синтез (-) цепи ДНК на матрице вирусной (+) -РНК;
  • разрушение вирусной РНК в составе образованного гибрида РНК-ДНК;
  • синтез (+) –цепи ДНК на (-) -цепь ДНК с образованием двухцепочечной ДНК.

Эта ДНК из цитоплазмы проникает в ядро, интегрируется в геном хозяина и служит матрицей для синтеза вирусных РНК при участии РНК-полимеразной системы клетки-хозяина. Образованные вирусные РНК выходят в цитоплазму, где инициируют трансляцию вирусных белков. Из этих белков и РНК собираются вирусные частицы, которые способны инфицировать новые клетки.

Это – IV стадия репродукции вирусов: синтез вирусных белков и репликация нуклеиновых к-т.

1. РНК пикорнавирусов выполняет роль и-РНК, транслируется на рибосомы, служит матрицей для образования единого гигантского полипептида. Последний расщепляется на несколько белков, один из кот-х является полимеразой. Начинается репликация той же РНК, освобождённой от рибосом.

2. РНК других вирусов служит матрицей, на кот-й транскрибируется и-РНК. Она транслируется на рибосомы, образуются определённые вирусные белки, один из кот-х - полимераза. Далее происходит репликация вирусной РНК, причём вначале образуется форма из 2-х нитей.

3. У онкогенных РНК-содержащих вирусов синтез идёт иначе. С матрицы РНК образуется ДНК-копия, имеющая 1 нить ДНК. В этом процессе участвует обратная транскриптаза, кот-я есть в вирионе. Затем идёт репликация этой нити ДНК, образуется 2 нити. На матрице этой ДНК-копии синтезируются молекулы РНК.

54. Какая разница между (+) и (-) вариантами 1-нитчатых РНК геномов?

Вирусные РНК делятся на + нити и - нити РНК.

+РНК представлены одиночными цепочками, имеющими характерные «шапочки» на концах для распознавания рибосом. К этой группе относят РНК, способные непосредственно транслировать генетическую информацию на рибосомах заражённой клетки, то есть выполнять ф-и м-РНК. Ф-и +нитей : служат м-РНК для синтеза структурных белков, матрицей для репликации РНК, упаковываются в капсид с образованием дочерней популяции.

-РНК не способны транслировать генетическую информацию на рибосомах. Служат матрицей для синтеза м-РНК.

Сущность радиоиммунного метода.

Используют очищенные и концентрированные Аг и АТ, меченные радиоизотопом (йодом).

Для выявления АТ – к исследуемой сыворотке добавляют меченый Аг. Титр АТ в сыворотке устанавливают по убыли свободного меченого Аг.

Для выявления Аг – исследуемый материал смешивают с антисывороткой, затем вносят гомологичный меченый Аг. Если меченый Аг остаётся свободным, реакция положительная , так как исследуемый Аг связался с сывороткой. Если меченый Аг уменьшается, это означает, что он взаимодействует с сывороткой – реакция отрицательная .

Используют для диагностики вирусного гепатита.

Как происходит заражение ВИЧ?

ВИЧ-инфекция – типичный антропоноз, у животных воспроизвести заболевание не удаётся. Резервуар вируса – инфицированный человек. Пути передачи:



1. Половой – через повреждения слизистых.

2. Использование одних игл и шприцев наркоманами.

3. Гемотрансфузионный – переливание крови и её препаратов.

4. Передача с донорскими органами.

ВИЧ чувствителен к д-ю высоких t°, этанола, эфира. В биологическом материале при комнатной t° жизнеспособен несколько дней.

Какие клетки поражает ВИЧ и какой рецептор имеют эти клетки? Мех-м развития ВИЧ.

Мишени для ВИЧ – Т-хелперы, моноциты, макрофаги, клетки микроглии.

Патогенез поражений: селективное поражение CD4 + -клеток, так как вирус использует CD4 как рецептор. В патогенезе 4 стадии:

I. Апоптоз – «запрограммированная» смерть клеток – при взаимодействии вирусов с рецепторной системой макрофагов нарушается «распознавание» вируса как чужеродного Аг.

II. Образование синцитиев – вирусы выходят в кровь и внедряются в новые незаражённые лимфоциты. Здоровые лимфоциты прилипают к поражённым. Активность лимфоцитов снижается под д-ем токсинов, образующихся при гибели клеток.

III. Аутоиммунные реакции – появление вирусных гликопротеинов на мембранах Т-хелперов приводит к активации Т-киллеров. Иммунная система не может противостоять даже сапрофитной флоре. Возникают «оппортунистические» инфекции.

IV. Инфицирование клеток-предшественников – при нормальном иммунитете эти клетки разрушаются, а в условиях иммунодефицита – активно размножаются. Возникают болезни злокачественного роста – саркома Капоши.

«Оппортунистические» инфекции – заболевания, вызванные микроорганизмом, способным поражать только индивидуумы с ослабленным иммунитетом.

Как устроен ВИЧ?

ВИЧ входит в состав ретровирусов. Характерно : уникальное строение генома и наличие обратной транскриптазы. Обратная транскриптаза обеспечивает обратную направленность потока генетической информации – от РНК к ДНК (отсюда название).

Геном : 2 идентичные молекулы 1-нитевой несегментированной +РНК.



При репродукции образуются промежуточные продукты ДНК – особенности размножения ретровирусов . Выделяют ВИЧ-I и ВИЧ-II.

Зрелые вирионы : сферическая форма, d = 120 нм, в геноме 2 нити +РНК, капсид, суперкапсид из двойного липидного слоя, кот-й пронизывают гликопротеиновые шипы. Эти шипы взаимодействуют с молекулами CD4 на мембранах клетки.

Репликация вирусных РНК является уникальным феноменом. Существенное отличие механизма синтеза вирусных РНК от механизма синтеза клеточных РНК состоит в том, что в качестве матрицы в первом случае используется РНК, а во втором - ДНК.

Для транскрипции РНК на РНК-матрице необходима вирионная РНК-зависимая РНК-полимераза. Репликация вирусной РНК требует, прежде всего, синтеза комплементарной РНК, которая затем служит матрицей для производства большого количества вирусной РНК.

Когда вирусная РНК имеет отрицательную полярность (орто-, парамиксо-, рабдо-, фило-, борна-, арена- и буньявирусы), комплементарная РНК будет иметь положительную полярность и РНК-полимераза, подобно вирионной транскриптазе, используется для первичной транскрипции мРНК.

Так как большинство транскриптов , синтезируемых на каждой вирусной (-)цепи РНК, являются молекулами субгеномной РНК, некоторые полноразмерные цепи служат матрицами для синтеза (репликации) вирусной РНК. Некоторые вирусы для транскрипции и репликации используют различные РНК-полимеразы, тогда как в других случаях одни и те же ферменты могут выполнять различные функции.

У многих РНК-вирусов , (пикорна-, калици-, астро-, тога-, флави-, корона-, артери-, нодавирусы) комплементарная РНК является отрицательно полярной. На одной комплементарной РНК-матрице может транскрибироваться одновременно несколько молекул вирусной РНК, а на каждом РНК-транскрипте начинается продукция полимеразы. Образуется структура, известная как реплика-тивный посредник, - частично двуцепочечная структура с одноцепочечными хвостами.

Для начала репликации РНК пикорнавирусов и калицивирусов, а также ДНК аденовирусов требуется небольшой белок, связанный ковалентно с 5"-концом вновь синтезированных (+) или (-) цепей РНК, так же как с родительской вирионной РНК, но не с мРНК.

Вновь синтезированные (+)РНК могут иметь разное назначение: включаться в репликативный комплекс и служить матрицей для синтеза комплементра-ных (-)РНК; выполнять функции мРНК; включаться в качестве генома в новые вирионы. Механизм, определяющий судьбу вновь синтезированных (+)РНК, не известен.

Ретровирусы имеют геномную (+) одноцепочечную РНК. В отличие от других РНК-вирусов, они реплицируются посредством ДНК-посредника. Вирионная обратная транскриптаза, используя РНК-молекулу как праймер, создает односпиральную ДНК-копию. Затем, функционируя как рибонуклеаза, тот же самый фермент удаляет родительскую молекулу РНК из ДНК-РНК-гибрида и копирует одноцепочечную ДНК-цепь, чтобы образовать линейную двуцепочечную ДНК, которая содержит дополнительную последовательность, известную как длинный концевой повтор (LTR) на каждом конце.
Эта двуцепочечная ДНК затем циркулирует и интегрирует с клеточной хромосомальной ДНК. Вирусная РНК транскрибируется с интегрированной (провирусной) ДНК.

Играют роль матриц . Новая цепь, синтезирующаяся на каждой из исходных цепей, идентична др. исходной цепи. Когда процесс завершается, образуются две идентичные двойные спирали , каждая из к-рых состоит из одной старой (исходной) и одной новой цепи (рис. 1). Таким образом от одного поколения к другому передается только одна из двух цепей, составляющих исходную молекулу ДНК ,-т. наз. полуконсервативный механизм репликации.

Репликация состоит из большого числа последоват. этапов, к-рые включают узнавание точки началу репликации, расплетание исходного дуплекса (спирали), удержание его цепей в изолированном друг от друга состоянии, инициацию синтеза на них новых дочерних цепей, их рост (элонгацию), закручивание цепей в спираль и терминацию (окончание) синтеза. Все эти этапы репликации, протекающие с высокой скоростью и исключит. точностью, обеспечивает комплекс, состоящий более чем из 20 ферментов и белков ,-т. наз. ДНК-репликазная система, или реплисома. Функцион. единица репликации-реплик он, представляющий собой сегмент (участок) хромосомы или внехромосомной ДНК , ограниченный точкой начала, в к-рой инициируется репликация, и точкой окончания, в к-рой репликация останавливается. Скорость репликации контролируется на стадии инициации. Однажды начавшись, репликация продолжается до тех пор, пока весь репликон не будет дуплицирован (удвоен). Частотд инициации определяется взаимод. спец. регуляторных белков с точкой начала репликации. Бактериальные хромосомы содержат один репликон: инициации в единств. точке начала репликации ведет к репликации всего генома . В каждом клеточном цикле репликация инициируется только один раз, Плазмиды и вирусы , являющиеся автономными генетич. элементами, представляют собой отдельные репликоны, способные к многократной инициации в клетке-хозяине. Эукариотич. хромосомы (хромосомы всех организмов , за исключением бактерий и синезеленых водорослей) содержат большое число репликонов, каждый из к-рых также однократно инициируется за один клеточный цикл .

Рис. 1. Схема полуконсервативного механизма репликации: А, Т, G и С-остатки пуриновых и пиримидиновых оснований (соотв. аденина , тимина , гуанина и цитозина); 1 -исходная цепь ДНК ; 2-новая цепь ДНК .

Начиная с точки инициации, репликация осуществляется в ограни-ченной зоне, перемещающейся вдоль исходной спирали ДНК . Эта активная зона репликации (т. наз. репликац. вилка) может двигаться в обоих направлениях. При однонаправленной репликации вдоль ДНК движется одна репликац. вилка. При двунаправленной репликации от точки инициации в противоположных направлениях расходятся две репликац. вилки; скорости их движения могут различаться. При репликации ДНК бактерии и млекопитающих скорость роста дочерней цепи составляет соотв. 500 и 50 нуклеотидов в 1 с; у растений эта величина не превышает 20 нуклеотидов в 1 с. Движение двух вилок в противоположных направлениях создает петлю, к-рая имеет вид "пузыря" или "глаза". Продолжающаяся репликация расширяет "глаз" до тех пор, пока он не включит в себя весь репликон.

В ходе репликации рост цепи осуществляется благодаря взаимод. дезоксирибонуклеозидтрифосфата с 3"-ОН концевым ну-клеотидом уже построенной части ДНК ; при этом отщепляется пирофосфат и образуется фосфодиэфирная связь. Рост полинуклеотидной цепи (рис. 2) идет только с ее З"-конца, т. е. в направлении 5" : 3" (см. Нуклеиновые кисло-ты). Фермент , катализирующий эту р-цию,-ДНК-полиме-раза (см. Полидезоксирибонуклеотид-синтетазы)-не способен начать матричный синтез на одноцепочечной ДНК , если нет хотя бы олигонуклеотидного биспирального участка (т. наз. затравочного олигонуклеотида) комплементарного матрице ; затравочным олигонуклеотидом во мн. случаях является не ДНК , а РНК .

Рис. 2. Направление роста дезоксирибонуклеотидных цепей при репликации; сплош ные линии - исходная ДНК , пунктирные - новые цепи ДНК (стрелки показывают на правлениеих роста); 1-репликац. вилка.

Энергия, затрачиваемая на образование каждой новой фосфодиэфирной связи в цепи ДНК , обеспечивается расщеплением фосфатной связи между a - и b -фосфатными группами нуклеозидтрифосфата.

ДНК-полимераза имеет один центр связывания нуклеозидтрифосфата, общий для всех четырех нуклеотидов . Выбор из среды нуклеотида , основание к-рого комплементарно очередному основанию матрицы , протекает без ошибок, благодаря определяющему влиянию ДНК-матрицы (исходной цепи ДНК). При нек-рых мутационных повреждениях структуры ДНК-полимеразы в ряде случаев происходит включение некомплементарных нуклеотидов .

В процессе репликации формальной ДНК на короткое время с вероятностью 10 -4 -10 -5 возникают редкие таутомерные формы всех 4 азотистых оснований нуклеотидов , к-рые образуют неправильные пары . Высокая точность репликации (вероятность ошибок не превышает 10 -9) обусловлена наличием механизмов, осуществляющих коррекцию (репарацию).

Репликац. вилка асимметрична. Из двух синтезируемых дочерних цепей ДНК одна строится непрерывно, а другая-с перерывами. Первую наз. ведущей, или лидирующей, цепью, а вторую-отстающей. Синтез второй цепи идет медленнее; хотя в целом эта цепь строится в направлении 3" : 5", каждый из ее фрагментов в отдельности наращивается в направлении 5" : 3" (рис. 3). Благодаря такому прерывистому механизму синтеза, репликация обеих антипараллельных цепей осуществляется с участием одного фермента-ДНК-полимеразы, катализирующего наращивание нуклеотидной цепи только в направлении 5" : 3".

Рис. 3. Схема механизма роста цепей ДНК при репликации: А-ведущая цепь, Б-отстающая цепь, В-фрагмент Оказаки.

В качестве затравок для синтеза фрагментов отстающей цепи служат короткие отрезки РНК , комплементарные матричной цепи ДНК . Эти РНК-затравки (праймеры), состоящие примерно из 10 нуклеотидов , с определенными интервалами синтезируются на матрице отстающей цепи из рибонуклеозидтрифосфатов в направлении 5" : 3" с помощью фермента РНК-праймазы. РНК-праймеры затем наращиваются дезоксинуклеотидами с 3"-конца ДНК-поли-меразой, к-рая продолжает наращивание до тех пор, пока строящаяся цепь не достигает РНК-затравки, присоединенной к 5"-концу предыдущего фрагмента. Образующиеся таким образом фрагменты (т. наз. фрагменты Оказаки) отстающей цепи насчитывают у бактерий 1000-2000 дез-оксирибонуклеотидных остатков; в животных клетках их длина не превышает 200 нуклеотидов .

Чтобы обеспечить образование непрерывной цепи ДНК из многих таких фрагментов, в действие вступает особая система репарации ДНК , удаляющая РНК-затравку и заменяющая ее на ДНК . У бактерий РНК-затравка удаляется нуклеотид за нуклеотидом благодаря 5" : 3"-экзонуклеазной активности ДНК-полимеразы. При этом каждый отщепленный рибонуклеотидный мономер замещается соответствующим дезоксирибонуклеотидом (в качестве затравки используется З"-конец синтезированного на старой цепи фрагмента). Завершает весь процесс фермент ДНК-лигаза, катализирующий образование фосфодиэфирной связи между группой З"-ОН нового фрагмента ДНК и 5"-фосфатной группой предыдущего фрагмента. Образование этой связи требует затраты энергии, к-рая поставляется в ходе сопряженного гидролиза пирофосфатной связи кофермента-никотинамид-адениндинуклеотида (в бактериальных клетках) или АТФ (в животных клетках и у бактериофагов).

Раскручивание двойной спирали и пространств. разделение цепей осуществляется при помощи неск. спец. белков . Т. наз. геликазы расплетают короткие участки ДНК , находящиеся непосредственно перед репликац. вилкой. На разделение каждой пары оснований расходуется энергия гидролиза двух молекул АТФ до аденозиндифосфата и фосфата . К каждой из разделившихся цепей присоединяется неск. молекул ДНК-связывающих белков , к-рые препятствуют образованию комплементарных пар и обратному воссоединению цепей. Благодаря этому нуклеотидные последовательности цепей ДНК оказываются доступными для репликативной системы. Др. специфич. белки помогают праймазе получить доступ к матрице отстающей цепи. В результате праймаза связывается с ДНК и синтезирует РНК-затравки для фрагментов отстающей цепи. Для формирования новых спира-,лей не требуется ни затрат энергии, ни участия к.-л. "закручивающего" фермента .

В случае кольцевого репликона (напр., у плазмиды) описанный процесс наз. q -репликацией. Т.к. кольцевые молекулы ДНК закручены сами на себя (суперспирализо-ваны), при раскручивании двойной спирали в процессе репликации они должны непрерывно вращаться вокруг собств. оси. При этом возникает торсионное напряжение, к-рое устраняется путем разрыва одной из цепей. Затем оба конца сразу же вновь соединяются друг с другом. Эту ф-цию выполняет фермент ДНК-топоизомераза. Репликация в этом случае обычно происходит в двух направлениях, т.е. существуют две репликац. вилки (рис. 4). После завершения репликации появляются две двухцепочечные молекулы , к-рые сначала связаны друг с другом как звенья одной цепи. При их разделении одно из двух колец временно разрывается.

Рис. 4. Один из механизмов репликации плазмиды (начало репликации обозначено точками); направления движения репликац. вилки показаны стрелками, образующиеся новые цепи ДНК-пунктиром.