Равновесное положение диполя. В чем разница между диполем (симметричной вибраторной антенной) и антенной (штыревая антенна с проволочными противовесами)? Вертикальная антенна с дополнительными горизонтальными отражающими элементами

Каждому беспроводному устройству нужна антенна. Это проводящее механическое устройство представляет собой преобразователь, который преобразует передаваемый радиочастотный (RF) сигнал в электрические и магнитные поля, составляющие радиоволну. Он также преобразует полученную радиоволну обратно в электрический сигнал. Для антенн возможно почти бесконечное множество конфигураций. Однако большинство из них основано на двух основных типах: дипольных и штыревых антеннах.

Понятие «антенны»

Радиоволна содержит электрическое поле, перпендикулярное магнитному полю. Оба перпендикулярны направлению распространения (рисунок ниже). Это электромагнитное поле и создает антенну. Сигнал, излучаемый устройством, вырабатывается в передатчике и затем отправляется на антенну с помощью линии передачи, обычно коаксиального кабеля.

Линии представляют собой магнитные и электрические силовые линии, которые движутся вместе и поддерживают друг друга, когда они «движутся наружу» от антенны.

Напряжение создает электрическое поле вокруг антенных элементов. Ток в антенне создает магнитное поле. Электрические и магнитные поля объединяются и регенерируют друг друга в соответствии с известными уравнениями Максвелла, и «комбинированная» волна отправляется с антенны в пространство. При приеме сигнала электромагнитная волна индуцирует напряжение в антенне, которое преобразует электромагнитную волну обратно в электрический сигнал, который может быть дополнительно обработан.

Первичным рассмотрением в ориентации любой антенны является поляризация, которая относится к ориентации электрического поля (E) с землей. Это также ориентация передающих элементов относительно земли. Вертикально установленная антенна, перпендикулярная к земле, излучает вертикально поляризованную волну. Таким образом, горизонтально расположенная антенна излучает горизонтально поляризованную волну.

Поляризация также может быть и круговой. Специальные конфигурации, такие как винтовые или спиральные антенны, могут излучать вращающуюся волну, создавая вращающуюся поляризованную волну. Антенна может создавать направление вращения либо вправо, либо влево.

В идеальном случае антенны как на передающем, так и на приемном устройстве должны иметь одинаковую поляризацию. На частотах ниже примерно 30 МГц волна обычно отражается, преломляется, вращается или иным образом модифицируется атмосферой, землей или другими объектами. Следовательно, согласование поляризации на двух сторонах не является критическим. На частотах ОВЧ, УВЧ и СВЧ поляризация должна быть одинаковой для обеспечения максимально качественной передачи сигнала. И, обратите внимание, что антенны демонстрируют взаимность, то есть они одинаково хорошо работают как на передачу, так и на прием.

Диполь или симметричная вибраторная антенна

Диполь представляет собой полуволновую структуру из проволоки, трубки, печатной платы (PCB) или другого проводящего материала. Он разделен на две равные четверти длины волны и подпитывается линией передачи.

Линии показывают распределение электрических и магнитных полей. Одна длина волны (λ) равна:

половина волны:

λ/2 = 492/f MHz

Фактическая длина обычно сокращается в зависимости от размера антенных проводов. Лучшее приближение к электрической длине:

λ/2 = 492 K/f MHz

где K — коэффициент, связывающий диаметр проводника с его длиной. Это 0,95 для проводных антенн с частотой 30 МГц или менее. Или:

λ/2 = 468/f MHz

Длина в дюймах:

λ/2 = 5904 K/f MHz

Значение K меньше для элементов большего диаметра. Для трубки диаметром в полдюйма K составляет 0,945. Дипольный канал для 165 МГц должен иметь длину:

λ/2 = 5904(0.945)/165 = 33.81 дюйма

или два 16,9-дюймовых сегмента.

Длина важна, потому что антенна является резонансным устройством. Для максимальной эффективности излучения он должен быть настроен на рабочую частоту. Однако антенна работает достаточно хорошо на узком диапазоне частот, как резонансный фильтр.

Полоса пропускания диполя является функцией его структуры. Обычно он определяется как диапазон, в котором отношение коэффициента стоячей волны антенны (КСВ) меньше 2:1. КСВ определяется величиной отраженного сигнала от устройства назад по линии передачи, подающей на него. Это функция импеданса антенны с отношением к импедансу линии передачи.

Идеальной линией передачи является сбалансированная проводящая пара с сопротивлением 75 Ом. Также можно использовать коаксиальный кабель с характеристическим импедансом 75 Ом (Zo). Коаксиальный кабель с характеристическим импедансом 50 Ом также может использоваться, так как он хорошо соответствует антенне, если он меньше половины длины волны над землей.

Коаксиальный кабель является несбалансированной линией, так как радиочастотный ток будет протекать снаружи коаксиального экрана, создавая некоторые нежелательные индуцированные помехи в соседних устройствах, хотя антенна будет работать достаточно хорошо. Лучший метод подачи — использовать симметрирующий трансформатор в точке подачи с коаксиальным кабелем. Симметрирующий трансформатор — это трансформаторное устройство, которое преобразует сбалансированные сигналы в несбалансированные сигналы или наоборот.

Диполь может быть установлен горизонтально или вертикально в зависимости от желаемой поляризации. Линия подачи идеально должна проходить перпендикулярно к излучающим элементам, чтобы избежать искажения излучения, поэтому диполь наиболее часто ориентирован горизонтально.

Диаграмма излучения сигнала антенны зависит от ее структуры и монтажа. Физическое излучение является трехмерным, но обычно оно представлено как горизонтальными, так и вертикальными диаграммами направленности.

Горизонтальная диаграмма направленности диполя представляет собой цифру восемь (рисунок 3). Максимальный сигнал появляется на антенне. На рисунке 4 показана вертикальная диаграмма направленности. Это идеальные образцы, которые легко искажаются землей и любыми соседними объектами.

Усиление антенны связано с направленностью. Коэффициент усиления обычно выражается в децибелах (дБ) с учетом некоторого «эталона», такого как изотропная антенна, которая является точечным источником радиочастотной энергии, излучающая сигнал во всех направлениях. Подумайте о точечном источнике света, освещающем внутреннюю часть расширяющейся сферы. Изотропная антенна имеет коэффициент усиления 1 или 0 дБ.

Если передатчик формирует или фокусирует диаграмму излучения и делает ее более направленной, он имеет усиление по изотропной антенне. Диполь имеет коэффициент усиления 2,16 дБи по изотропному источнику. В некоторых случаях коэффициент усиления выражается в зависимости от дипольного задания в дБд.

Вертикальная антенна с дополнительными горизонтальными отражающими элементами

Данное устройство представляет собой, по существу, половину диполя, установленного вертикально. Термин монополь также используется для описания этой установки. Земля ниже под антенной, проводящая поверхность с наименьшим λ / 4 по радиусу или образец λ / 4-проводников, называемых радиальными, составляют вторую половину антенны (рис.5).

Если антенна подключена к хорошему заземлению, она называется антенной Маркони. Основной структурой служит другая λ / 4 половина передатчика. Если плоскость заземления имеет достаточный размер и проводимость, то производительность заземления эквивалентна вертикально установленному диполю.

Длина четвертьволновой вертикали:

λ/4 = 246 K/f MHz

Коэффициент K меньше 0,95 для вертикалей, которые обычно изготавливаются с более широкой трубкой.

Импеданс точки питания представляет собой половину диполя или примерно 36 Ом. Фактическая цифра зависит от высоты над землей. Подобно диполю, плоскость заземления является резонансной и обычно имеет реактивный компонент в своем основном импедансе. Наиболее распространенной линией передачи является 50-Ω коаксиальный кабель, поскольку он относительно хорошо соответствует импедансу антенны с КСВ ниже 2: 1.

Вертикальная антенна с дополнительным отражающим элементом является ненаправленной. Горизонтальная диаграмма направленности — это круг, в котором устройство излучает сигнал одинаково хорошо во всех направлениях. На рисунке 6 показана вертикальная диаграмма направленности. По сравнению с вертикальной диаграммой направленности диполя плоскость заземления имеет более низкий угол излучения, что дает преимущество более широкого распространения при частотах ниже примерно 50 МГц.

Выводы

Кроме того, могут быть выполнены две или более вертикальные антенны с дополнительным отражающим элементом для создания более направленного сигнала с усилением. Например, направленная радиостанция AM использует две или более башни для направления сильного сигнала в одном направлении, подавляя его в другом.

Коэффициент стоячей волны

Стоячие волны представляют собой схемы распределения напряжения и тока вдоль линии передачи. Если характеристический импеданс (Zo) линии соответствует выходному импедансу генератора (передатчика) и нагрузке антенны, напряжение и ток вдоль линии постоянны. При согласованном импедансе происходит максимальная передача мощности.

Если нагрузка антенны не соответствует линейному импедансу, не вся передаваемая мощность поглощается нагрузкой. Любая мощность, не поглощенная антенной, отражается назад по линии, мешая прямому сигналу и создавая изменения тока и напряжения вдоль линии. Эти вариации представляют собой стоячие волны.

Мерой этого несоответствия является коэффициент стоячей волны (КСВ). КСВ обычно выражается как отношение максимального и минимального значений прямого и обратного тока или значений напряжения вдоль линии:

КСВ = I max /I min = V max /V min

Другим более простым способом выразить КСВ является отношение характеризующего импеданса линии передачи (Zo) к импедансу антенны (R):

КСВ = Z o /R или R/Z o

в зависимости от того, какой импеданс больше.

Идеальный КСВ составляет 1: 1. КСВ от 2 до 1 указывает на отраженную мощность 10%, а это означает, что 90% передаваемой мощности поступает на антенну. КСВ 2: 1 обычно считается максимально допустимым для наиболее эффективной работы системы.

Рассмотрим теперь результирующее поле, которое возникает при одновременном действии двух осцилляторов. В предыдущей главе уже разбиралось несколько наиболее простых случаев. Мы дадим сначала качественную картину явления, а затем опишем те же эффекты с количественной точки зрения. Возьмем простейший случаи, когда осцилляторы и детектор расположены в одной горизонтальной плоскости, а колебания осцилляторов происходят в вертикальном направлении.

На фиг. 29.5,а показан вид обоих осцилляторов сверху; в данном случае расстояние между ними в направлении север - юг равно половине длины волны и колеблются они в одной фазе, т.е. разность фаз осцилляторов равна нулю. Нас интересует интенсивность излучения в разных направлениях. Под интенсивностью мы подразумеваем количество энергии, проходящей мимо нас в 1 сек; оно пропорционально квадрату напряженности поля, усредненному по времени. Так, для определения яркости света нужно взять квадрат напряженности электрического поля, а не саму напряженность. (Напряженность электрического поля характеризуется силой, с которой поле действует на неподвижный заряд, а количество энергии, проходящей через некоторую площадку, пропорционально квадрату напряженности поля и измеряется в ваттах на квадратный метр. Коэффициент пропорциональности будет выведен в следующей главе.) Если мы находимся к западу от системы осцилляторов, и нам от обоих осцилляторов приходят поля, одинаковые но величине и с одной фазой, так что суммарное электрическое поле в два раза больше поля отдельного осциллятора. Следовательно, интенсивность будет в четыре раза больше интенсивности, возникающей от действия только одного осциллятора. (Числа на фиг. 29.5 указывают интенсивность, причем за единицу измерения выбрана интенсивность излучении одного осциллятора, помещенного в начале координат.) Пусть теперь поле измеряется в северном или южном направлении, вдоль линии осцилляторов. Поскольку расстояние между осцилляторами равно половине длины волны, их поля излучения различаются по фазе ровно на полцикла, а следовательно, суммарное поле равно нулю. Для промежуточного угла (равного ) интенсивность равна 2, т. е., уменьшаясь, интенсивность последовательно принимает значения 4, 2, О и т. д. Нам нужно научиться находить интенсивность для разных углов. По существу, это сводится к задаче о сложении двух колебаний с разными фазами.

Фигура 29.5. Зависимость интенсивности излучения двух диполей, находящихся на расстоянии в половину длины волны, от направления излучения.

а - диполи в фазе (); б - диполи в противофазе .

Давайте коротко рассмотрим еще несколько интересных случаев. Пусть расстояние между осцилляторами, как и раньше, равно половине длины волны, но колебания одного осциллятора отстают по фазе от колебаний другого на половину периода (см. фиг. 29.5, б). Интенсивность в горизонтальном направлении (западном или восточном) обращается в нуль, потому что один осциллятор «толкает» в одном направлении, а другой - в обратном. В северном направлении сигнал от ближайшего осциллятора приходит на полпериода раньше сигнала от дальнего осциллятора. Но последний запаздывает в своих колебаниях как раз на полпериода, так что оба сигнала приходят одновременно, и интенсивность в северном направлении равна 4. Интенсивность под углом 30°, как будет показано позже, снова равна 2.

Теперь мы подошли к одному интересному свойству, весьма полезному на практике. Заметим, что фазовые соотношения между осцилляторами используются при передаче радиоволн. Допустим, мы хотим направить радиосигнал на Гавайские острова. Используем для этого систему антенн, расположенную так, как показано на фиг. 29.5, а, и установим между ними нулевую разность фаз. Тогда максимальная интенсивность будет идти как раз в нужном направлении, поскольку Гавайские острова лежат на западе от США. На следующий день мы решим передавать сигналы уже в Канаду. А поскольку Канада находится на севере, нам надо только изменить знак одной из антенн, чтобы антенны находились в противофазе, как на фиг. 29.5, б, и передача пойдет на север. Можно придумать разные устройства системы антенн. Наш способ - один из самых простых; мы можем значительно усложнить систему и, выбрав нужные фазовые соотношения, послать пучок с максимальной интенсивностью в требуемом направлении, даже не сдвинув с места ни одну из антенн! Однако в обеих радиопередачах мы затрачивали много энергии зря, она уходила в прямо противоположном направлении; интересно знать, есть ли способ посылать сигналы только в одном направлении? На первый взгляд кажется, что пара антенн такого типа будет всегда излучать симметрично. На самом деле картина гораздо разнообразнее; рассмотрим для примера случай несимметричного излучения двух антенн.

Фигура 29.6. Две дипольные антенны, дающие максимум излучения

Пусть расстояние между антеннами равно четверти длины волны и северная антенна отстает от южной по фазе на четверть периода. Что у нас тогда получится (фиг. 29.6)? Как мы дальше покажем, в западном направлении интенсивность равна 2. В южном направлении получится нуль, потому что сигнал от северного источника приходит на 90° позже сигнала от южного источника и, кроме того, он отстает по фазе еще на 80°; в результате полная разность фаз есть 180° и суммарный эффект равен нулю. В северном направлении сигнал от источника приходит на 90° раньше сигнала от , поскольку источник на четверть волны ближе. Но разность фаз равна 90° и компенсирует задержку во времени, поэтому оба сигнала приходят с одной фазой, что дает интенсивность, равную 4.

Таким образом, проявив некоторую изобретательность в расположении антенн и выбрав нужные сдвиги фаз, можно направить энергию излучения в одном направлении. Правда, энергия будет все-таки испускаться в довольно большой интервал углов. А можно ли сфокусировать излучение в более узкий интервал углов? Обратимся снова к передаче волн на Гавайские острова; там радиоволны шли на запад и на восток в широком диапазоне углов и даже на угол 30° интенсивность была всего вдвое меньше максимальной, энергия расходовалась впустую.

Можно ли улучшить это положение? Рассмотрим случай, когда расстояние между источниками равно десяти длинам волн (фиг. 29.7), а разность фаз колебаний равна нулю. Это ближе к ситуации, описанной ранее, когда мы экспериментировали с интервалами, равными нескольким длинам волн, а не малым долям длины волны. Здесь иная картина.

Фигура 29.7. Распределение интенсивности двух диполей. Находящихся на расстоянии друг от друга

Если расстояние между источниками равно десяти длинам волн (мы выбираем более легкий случай, когда они находятся в фазе), то в западном и восточном направлениях интенсивность максимальна и равна 4. Если же сдвинуться на небольшой угол, разность фаз станет равной 180° и интенсивность обратится в нуль. Более строго: если мы проведем прямые от каждого осциллятора до точки наблюдения и вычислим разность расстояний до осцилляторов , причем окажется равным , то оба сигнала будут в противофазе и суммарный эффект равен нулю. Этому направлению отвечает первый нуль на фиг. 29.7 (масштаб на рисунке не выдержан, это, по существу, грубая схема). Это означает, что мы получаем узкий луч в нужном направлении; если же мы чуть сдвигаемся в сторону, интенсивность исчезает. Для практических целей, к сожалению, такие передающие системы имеют существенный недостаток: при некотором угле расстояние может стать равным и тогда оба сигнала снова окажутся в фазе! В результате получается картина с чередующимися максимумами и минимумами, точь-в-точь как в гл. 28 для расстояния между осцилляторами, равного .

Как избавиться от всех лишних максимумов? Существует довольно интересный способ устранения нежелательных максимумов. Поместим между нашими двумя антеннами целый ряд других (фиг. 29.8). Пусть расстояние между крайними по-прежнему равно , а через каждые , поставим по антенне и настроим все антенны на одну фазу. Всего у нас будет, таким образом, шесть антенн, и интенсивность в направлении запад - восток, конечно, сильно возрастет по сравнению с интенсивностью от одной антенны. Поле увеличится в шесть раз, а интенсивность, определяемая квадратом поля,- в тридцать шесть раз. Поблизости от направления запад - восток, как и раньше, возникнет направление с нулевой интенсивностью, а дальше, там, где мы ожидали увидеть высокий максимум, появится всего лишь небольшой «горб». Попробуем разобраться, почему так происходит.

Фигура. 29.8. Устройство из шести дипольных антенн и часть распределения интенсивности его излучения.

Причина появления максимума, казалось бы, по-прежнему существует, поскольку может равняться длине волны, и осцилляторы 1 и 6, находясь в фазе, взаимно усиливают свои сигналы. Но осцилляторы 3 и 4 оказываются не в фазе с осцилляторами 1 и 6, отличаясь от них по фазе приблизительно на половину длины волны, и вызывают обратный эффект по сравнению с этими осцилляторами. Поэтому интенсивность в данном направлении оказывается малой, хотя и не равной точно нулю. В результате возникает мощный луч в нужном направлении и ряд небольших побочных максимумов. Но в нашем частном примере есть одна добавочная неприятность: поскольку расстояние между соседними диполями равно , можно найти угол, для которого разность хода лучей от соседних диполей в точности равна длине волны. Сигналы от соседних осцилляторов будут отличаться на 360°, т. е. снова окажутся в фазе, и в этом направлении мы получим еще один мощный пучок радиоволн! На практике этого эффекта легко избежать, если выбрать расстояние между осцилляторами меньше одной длины волны. Само же возникновение добавочных максимумов при расстоянии между осцилляторами более одной длины волны очень интересно и важно, но не для передачи радиоволн, а для дифракционных решеток.

Чтобы понять механизм поведения диэлектриков в поле на микроскопическом уровне, нам надо сначала объяснить, как может электрически нейтральная система реагировать на внешнее электрическое поле. Простейший случай - полное отсутствие зарядов - нас не интересует. Мы знаем наверняка, что в диэлектрике имеются электрические заряды - в составе атомов, молекул, ионов кристаллической решетки и т. д. Поэтому мы рассмотрим следующую по простоте конструкции электронейтральную систему - два равных по величине и противоположных по знаку точечных заряда +q и –q , находящихся на расстоянии l друг от друга. Такая система называется электрическим диполем .

Рис. 3.6. Электрический диполь

Линии напряженности электрического поля и эквипотенциальные поверхности электрического диполя выглядят следующим образом (рис. 3.7, 3.8, 3.9)

Рис. 3.7. Линии напряженности электрического поля электрического диполя

Рис. 3.8. Эквипотенциальные поверхности электрического диполя

Рис. 3.9. Линии напряженности электрического поля и эквипотенциальные поверхности

Основной характеристикой диполя является . Введем вектор l , направленный от отрицательного заряда (–q ) к положительному (+q ), тогда вектор р , называемый электрическим моментом диполя или просто дипольным моментом , определяется как

Рассмотрим поведение «жесткого» диполя - то есть расстояние которого не меняется - во внешнем поле Е (рис. 3.10).

Рис. 3.10. Силы, действующие на электрический диполь, помещенный во внешнее поле

Пусть направление дипольного момента составляет с вектором Е угол . На положительный заряд диполя действует сила, совпадающая по направлению с Е и равная F 1 = +qE , а на отрицательный - противоположно направленная и равная F 2 = –qE . Вращающий момент этой пары сил равен

Так как ql = р , то М = рЕ sin или в векторных обозначениях

(Напомним, что символ

означает векторное произведение векторов а и b .) Таким образом, при неизменном дипольном моменте молекулы () механический момент, действующий на нее, пропорционален напряженности Е внешнего электрического поля и зависит от угла между векторами р и E .

Под действием момента сил М диполь поворачивается, при этом совершается работа

которая идет на увеличение его потенциальной энергии. Отсюда получаем потенциальную энергию диполя в электрическом поле

если положить const = 0.

Из рисунка видно, что внешнее электрическое поле стремится повернуть диполь таким образом, чтобы вектор его электрического момента р совпал по направлению с вектором Е . В этом случае , а, следовательно, и М = 0. С другой стороны, при потенциальная энергия диполя во внешнем поле принимает минимальное значение , что соответствует положению устойчивого равновесия. При отклонении диполя от этого положения снова возникает механический момент, который возвращает диполь в первоначальное положение. Другое положение равновесия, когда дипольный момент направлен против поля является неустойчивым . Потенциальная энергия в этом случае принимает максимальное значение и при небольших отклонениях от такого положения возникающие силы не возвращают диполь назад, а еще больше отклоняют его.

На рис. 3.11 показан опыт, иллюстрирующий возникновение момента электрических сил, действующих на диэлектрик в электрическом поле. На удлиненный диэлектрический образец, расположенный под некоторым углом к силовым линиям электростатического поля, действует момент сил, стремящийся развернуть этот образец вдоль поля. Диэлектрическая палочка, подвешенная за середину внутри плоского конденсатора, разворачивается перпендикулярно его пластинам после подачи на них высокого напряжения от электростатической машины. Появление вращающего момента обусловлено взаимодействием поляризовавшейся палочки с электрическим полем конденсатора.

Рис. 3.11. Момент электрических сил, действующих на диэлектрик в электрическом поле

В случае неоднородного поля на рассматриваемый диполь будет действовать еще и равнодействующая сила F paвн, стремящаяся его сдвинуть. Мы рассмотрим здесь частный случай. Направим ось х вдоль поля Е . Пусть диполь под действием поля уже повернулся вдоль силовой линии, так что отрицательный заряд находится в точке с координатой x , а положительный заряд расположен в точке с координатой х + l . Представим себе, что величина напряженности поля зависит от координаты х . Тогда равнодействующая сила F paвн равна

Такой же результат может быть получен из общего соотношения

где энергия П определена в (3.8). Если Е увеличивается с ростом x , то

и проекция равнодействующей силы положительна. Это значит, что она стремиться втянуть диполь в область, где напряженность поля больше. Этим объясняется известный эффект, когда нейтральные кусочки бумаги притягиваются к наэлектризованной расческе. В плоском конденсаторе с однородным полем они остались бы неподвижными.

Рассмотрим несколько опытов, иллюстрирующих возникновение силы, действующей на диэлектрик, помещенный в неоднородное электрическое поле.

На рис. 3.12 показано втягивание диэлектрика в пространство между обкладками плоского конденсатора. В неоднородном электростатическом поле на диэлектрик действуют силы, втягивающие его в область более сильного поля.

Рис. 3.12. Втягивание жидкого диэлектрика в плоский конденсатор

Это демонстрируется при помощи прозрачного сосуда, в который помещен плоский конденсатор, и налито некоторое количество жидкого диэлектрика - керосина (рис.3.13). Конденсатор присоединен к высоковольтному источнику питания - электростатической машине. При ее работе на нижнем краю конденсатора, в области неоднородного поля, на керосин действует сила, втягивающая его в пространство между пластинами. Поэтому уровень керосина внутри конденсатора устанавливается выше, чем снаружи. После выключения поля уровень керосина между пластинами падает до его уровня в сосуде.

Рис. 3.13. Втягивание керосина в пространство между обкладками плоского конденсатора

В реальных веществах нечасто встречаются диполи, образованные только двумя зарядами. Обычно мы имеем дело с более сложными системами. Но понятие электрического дипольного момента применимо и к системам со многими зарядами. В этом случае дипольный момент определяется как

где , - величина заряда с номером i и радиус-вектор, определяющий его местоположение, соответственно. В случае двух зарядов мы приходим к прежнему выражению

Пусть наша система зарядов электрически нейтральна. В ней есть положительные заряды, величины которых и местоположения мы обозначим индексом «+». Индексом «–» мы снабдим абсолютные величины отрицательных зарядов и их радиус-векторы. Тогда выражение (3.10) может быть записано в виде

В (3.11) в первом слагаемом суммирование ведется по всем положительным зарядам, а во втором - по всем отрицательным зарядам системы.

Выражения (3.13) аналогичны формулам для центра масс в механике, и потому мы назвали их центрами положительных и отрицательных зарядов, соответственно. С этими обозначениями и с учетом соотношения (3.12) мы записываем электрический дипольный момент (3.11) системы зарядов в виде

где l -вектор, проведенный из центра отрицательных зарядов в центр положительных зарядов. Смысл нашего упражнения заключается в демонстрации, что любую электрически нейтральную систему зарядов можно представить как некий эквивалентный диполь.

Рассмотрим поле простейшей системы точечных зарядов. Простейшей системой точечных зарядов является электрический диполь. Электрическим диполем называется совокупность равных по величине, но противоположных по знаку двух точечных зарядов –q и +q , сдвинутых друг относительно друга на некоторое расстояние. Пусть – радиус-вектор, проведенный от отрицательного заряда к положительному. Вектор

называется электрическим моментом диполя или дипольным моментом, а вектор – плечом диполя. Если длина пренебрежимо мала по сравнению с расстоянием от диполя до точки наблюдения, то диполь называется точечным.

Вычислим электрическое поле электрического точечного диполя. Поскольку диполь точечный, то безразлично в пределах точности расчета от какой точки диполя отсчитывается расстояние r до точки наблюдения. Пусть точка наблюдения А лежит на продолжении оси диполя (рис. 1.13). В соответствии с принципом суперпозиции для вектора напряженности, напряженность электрического поля в этой точке будет равна

при этом предполагалось, что , .

В векторной форме

где и – напряженности полей, возбуждаемых точечными зарядами –q и +q . Из рис 1.14 видно, что вектор антипараллелен вектору и его модуль для точечного диполя определится выражением

здесь учтено, что при сделанных предположениях .

В векторной форме последнее выражение перепишется следующим образом

Не обязательно, чтобы перпендикуляр АО проходил через центр точечного диполя. В принятом приближении полученная формула остается верной и тогда, когда за точку О принята любая точка диполя.

Общий случай сводится к разобранным частным случаям (рис. 1.15). Опустим из заряда +q перпендикуляр СD на линию наблюдения ВА . Поместим в точку D два точечных заряда +q и –q . Это не изменит поля. Но полученную совокупность четырех зарядов можно рассматривать как совокупность двух диполей с дипольными моментами и . Диполь мы можем заменить геометрической суммой диполей и . Применяя теперь к диполям и полученные ранее формулы для напряженности на продолжении оси диполя и на перпендикуляре, восстановленном к оси диполя, в соответствии с принципом суперпозиции получим:



Учитывая, что , получим:

здесь использовано, что .

Таким образом, характерным для электрического поля диполя является то, что оно убывает во всех направлениях пропорционально , то есть быстрее, чем поле точечного заряда.

Рассмотрим теперь силы, действующие на диполь в электрическом поле. В однородном поле заряды +q и –q окажутся под действием равных по величине и противоположных по направлению сил и (рис. 1.16). Момент этой пары сил будет:

Момент стремится повернуть ось диполя в положение равновесия, то есть в направлении вектора . Существует два положения равновесия диполя: когда диполь параллелен электрическому полю и антипараллелен ему. Первое положение будет устойчиво, а второе нет, так как в первом случае при малом отклонении диполя от положения равновесия возникнет момент пары сил, стремящийся вернуть его в исходное положение, во втором случае возникающий момент уводит диполь ещё дальше от положения равновесия.

Теорема Гаусса

Как было сказано выше, силовые линии условились проводить с такой густотой, чтобы количество линий, пронизывающих единицу поверхности, перпендикулярной к линиям площадки, было бы равно модулю вектора . Тогда по картине линий напряженности можно судить не только о направлении, но и величине вектора в различных точках пространства.

Рассмотрим силовые линии неподвижного положительного точечного заряда. Они представляют собой радиальные прямые, выходящие из заряда и заканчивающиеся на бесконечности. Проведем N таких линий. Тогда на расстоянии r от заряда число силовых линий, пересекающих единицу поверхности сферы радиуса r , будет равно . Эта величина пропорциональна напряженности поля точечного заряда на расстоянии r. Число N всегда можно выбрать таким, чтобы выполнялось равенство

откуда . Поскольку силовые линии непрерывны, то такое же число силовых линий пересекает замкнутую поверхность любой формы, охватывающую заряд q. В зависимости от знака заряда силовые линии либо входят в эту замкнутую поверхность, либо выходят наружу. Если число выходящих линий считать положительным, а входящих – отрицательным, то можно опустить знак модуля и записать:

. (1.4)

Поток вектора напряженности. Поместим в электрическое поле элементарную площадку, имеющую площадь . Площадка должна быть настолько малой, чтобы напряженность электрического поля во всех ее точках можно было считать одинаковой. Проведем нормаль к площадке (рис. 1.17). Направление этой нормали выбирается произвольно. Нормаль составляет угол с вектором . Потоком вектора напряженности электрического поля через выделенную поверхность называется произведение площади поверхности на проекцию вектора напряженности электрического поля на нормаль к площадке:

где – проекция вектора на нормаль к площадке .

Поскольку число силовых линий, пронизывающих единичную площадку, равно модулю вектора напряженности в окрестности выделенной площадки, то поток вектора напряженности через поверхность пропорционален числу силовых линий, пересекающих эту поверхность. Поэтому, в общем случае, наглядно поток вектора напряженности поля через площадку можно интерпретировать как величину, равную числу силовых линий, пронизывающих эту площадку:

. (1.5)

Заметим, что выбор направления нормали условен, ее можно направить и в другую сторону. Следовательно, поток – величина алгебраическая: знак потока зависит не только от конфигурации поля, но и от взаимной ориентации вектора нормали и вектора напряженности. Если эти два вектора образуют острый угол, поток положителен, если тупой – отрицателен. В случае замкнутой поверхности принято нормаль брать наружу области, охватываемой этой поверхностью, то есть выбирать внешнюю нормаль.

Если поле неоднородно и поверхность произвольна, то поток определяется так. Всю поверхность надо разбить на малые элементы площадью , вычислить потоки напряженности через каждый из этих элементов, а потом просуммировать потоки через все элементы:

Таким образом, напряженность поля характеризует электрическое поле в точке пространства. Поток напряженности зависит не от значения напряженности поля в данной точке, а от распределения поля по поверхности той или иной площади.

Силовые линии электрического поля могут начинаться только на положительных зарядах и заканчиваться на отрицательных. Они не могут начинаться или обрываться в пространстве. Поэтому, если внутри некоторого замкнутого объема нет электрического заряда, то полное число линий, входящих в данный объем и выходящих из него, должно равняться нулю. Если из объема выходит больше линий, чем входит в него, то внутри объема находится положительный заряд; если входит линий больше, чем выходит, то внутри должен быть отрицательный заряд. При равенстве полного заряда внутри объема нулю или при отсутствии в нем электрического заряда линии поля пронизывают его насквозь, и полный поток равен нулю.

Эти простые соображения не зависят от того, как электрический заряд распределен внутри объема. Он может находиться в центре объема или вблизи поверхности, ограничивающей объем. В объеме может находиться несколько положительных и отрицательных зарядов, распределенных внутри объема любым способом. Только суммарный заряд определяет полное число входящих или выходящих линий напряженности.

Как видно из (1.4) и (1.5), поток вектора напряженности электрического поля через произвольную замкнутую поверхность, охватывающую заряд q, равен . Если внутри поверхности находится n зарядов, то, согласно принципу суперпозиции полей, полный поток будет складываться из потоков напряженностей полей всех зарядов и будет равен , где под в этом случае подразумевается алгебраическая сумма всех зарядов, охватываемых замкнутой поверхностью.

Теорема Гаусса. Гаусс первым обнаружил тот простой факт, что поток вектора напряженности электрического поля через произвольную замкнутую поверхность должен быть связан с полным зарядом, находящимся внутри этого объема.

А. Б. Рыбаков ,
, Военно-космический кадетский корпус, г. Санкт-Петербург

Диполь в поле и поле диполя

Основные вопросы электростатики: Какое поле создаёт данное распределение зарядов и какая сила действует на эти заряды во внешнем поле? Относительно точечного заряда эти вопросы решаются известными всем формулами школьного курса. Следующий важный и простой объект электростатики – это, конечно, диполь. Диполь – это два разноимённых, равных по величине точечных заряда, расположенных на фиксированном расстоянии l друг от друга. Диполь характеризуется дипольным моментом p = qL (1)
где l – вектор, направленный от отрицательного заряда к положительному.
Интерес к диполю связан, в частности, с тем, что молекулы многих веществ обладают дипольным моментом, а кроме того, молекулы всех веществ приобретают дипольный момент во внешнем электрическом поле. И макроскопические тела (как проводящие, так и не проводящие ток) во внешнем поле поляризуются, т.е. приобретают дипольный момент. Важнейшие приложения представленных здесь результатов – это поля в диэлектрике.
Поставим самые напрашивающиеся вопросы в заявленной теме и попытаемся их разрешить. Никакой особой математики, выходящей за рамки школьного курса, нам не понадобится.
Производную от функции Ф(х) будем обозначать dФ/dх. Для удобства записи некоторых результатов мы будем использовать скалярное произведение векторов.
Напомним, что a · b = a · b · cos α, где α – угол между векторами. Размерную константу в законе Кулона мы обозначаем

Диполь в поле (простые задачи)
1 . Какие силы действуют на диполь в однородном электрическом поле?
Пусть диполь p находится в поле напряжённостью E , пусть вектор дипольного момента составляет угол α с вектором напряжённости поля. Легко видеть, что на диполь в этом случае действует пара сил с моментом
М = qElsin α = pEsin α , которая стремится ориентировать диполь вдоль силовых линий поля. Так что если диполь может вращаться, то он сориентируется указанным образом. Заметим, что у диполя есть и другое положение равновесия, когда он сориентирован противоположным образом, но это положение неустойчиво.
2 . Какова энергия диполя в однородном поле?
Как всегда, в задачах, где речь идёт о потенциальной энергии, надо сначала условиться, откуда мы будем эту энергию отсчитывать. Пусть мы отсчитываем её от указанного выше равновесного положения. Тогда энергия – это работа, которую совершат силы поля при вращении диполя вокруг своего центра от исходного положения, характеризуемого углом α (см. рис. к п. 1), до равновесного. Напомним, что работа связана только с перемещением заряда вдоль направления E . Заряды диполя при таком вращении сместятся вдоль линий поля (в разные стороны) на l (1– cos α)/2. Поэтому искомая энергия W = qEl (1 – cos α) = pE (1 – cos α).
Но чаще в учебниках по электричеству предпочитают в этой задаче полагать, что W = 0 в том положении диполя, когда вектор p перпендикулярен E . В этом случае
W = –qEl  cos α = –pE .
Высказанное в конце п. 1 утверждение можно теперь сформулировать и иначе: диполь стремится занять теперь положение с минимальной энергией. Так, дипольные молекулы диэлектрика во внешнем поле стремятся все сориентироваться указанным образом (а тепловое движение мешает им в этом).
3 . Теперь пусть диполь, сориентированный вдоль линий поля, находится в неоднородном поле. Тогда, как легко видеть, на него вдоль линий поля действует сила, направленная в сторону увеличения величины поля:
(индексы «+» и «–» помечают тот заряд диполя, к которому относится соответствующая физическая величина). Именно эта сила объясняет самый простой опыт, в котором заряженное тело (независимо от знака заряда) притягивает мелкие кусочки бумаги.

Поле диполя
4 . Прежде чем заняться расчётом поля диполя, остановимся на общих моментах. Пусть, например, нас интересует гравитационное поле какого-то астероида неправильной формы. Поле в непосредственной близости от астероида можно получить только путём компьютерного расчёта. Но, чем дальше мы отходим от астероида, тем с большей точностью мы можем рассматривать его как материальную точку (поле которой мы знаем). При стремлении к большей математической строгости надо было сказать, что мы знаем асимптотическое поведение поля при
С похожей ситуацией мы сталкиваемся и в электростатическом поле. Электростатическое поле по своим свойствам очень похоже на гравитационное (потому что аналогичны фундаментальные законы: закон Кулона и закон всемирного тяготения), но, если так можно сказать, «богаче» его. Ведь электрические заряды могут быть двух типов, между ними возможно и притяжение, и отталкивание, а между «гравитационными зарядами» (т.е. массами) возможно только притяжение.
Будем считать, что в какой-то ограниченной области распределены положительные и отрицательные точечные заряды q 1 , q 2 , … , q n . Полный заряд системы
(2)
Мы уже понимаем, что при Q ≠ 0 поле при больших r переходит в поле точечного заряда Q. Но возникает очень важный для нас вопрос: каким будет поле на больших расстояниях, если полный заряд
Q = 0? Самое простое распределение точечных зарядов с Q = 0 – это и есть диполь. Вот почему изучение поля диполя несёт в себе важные принципиальные моменты.
Итак, нас будут в основном интересовать такие ситуации, когда все характерные размеры r весьма велики по сравнению с расстоянием l между зарядами диполя. Эту ситуацию можно описать двояко. Во-первых, мы можем всегда иметь в виду, что заряды расположены на конечном расстоянии l друг от друга, и интересоваться поведением полученных решений при Но можно и п росто говорить о точечном диполе с определённым дипольным моментом p , тогда все наши результаты справедливы при любом r > 0 (две эти точки зрения, конечно, эквивалентны).
Мы будем использовать известные всем формулы для полей точечных зарядов и в полученных выражениях учитывать, что l мало. Поэтому напомним формулы приближённых вычислений: если , то
Везде в выкладках знак «≈» будет указывать на то, что мы воспользовались этими формулами в случае малого параметра (малый параметр в рассматриваемых задачах – это l/r).
5 . Качественная картинка силовых линий поля диполя хорошо известна, приводится во многих учебниках, и мы не будем её здесь приводить. Хотя и расчёт поля в произвольной точке несложен, мы всё же ограничимся расчётом потенциала и напряжённости вдоль двух выделенных направлений. Совместим начало системы координат с центром диполя, ось х направим вдоль вектора p , а ось Y – перпендикулярно (при этом заряды диполя отстоят от начала координат на расстояние ). Будем считать, что в бесконечно удалённой точке
6. Рассчитаем напряжённость поля диполя на оси Y.
По принципу суперпозиции, E = E + + E – , где E + и E – – векторы напряжённости полей отдельных зарядов. Из подобия треугольников:
что можно записать как
Теперь скажем о ходе потенциала вдоль оси Y. По­скольку в любой точке оси Y вектор E перпендикулярен оси, то при перемещении какого-то заряда вдоль этой оси поле диполя никакой работы не совершает, и следовательно, в любой точке этой оси
7 . Вычислим потенциал j поля в произвольной точке оси х. По принципу суперпозиции, он равен сумме потенциалов и созданных положительным и отрицательным зарядами.
Пусть х > 0, тогда:
(3)
(выражение для (х) для х < 0 будет c другим знаком).
Из симметрии задачи ясно, что на оси х вектор напряжённости поля E имеет только составляющую Е х. Её можно вычислить, исходя из известной формулы, связывающей напряжённость поля и потенциал:
(4)
но в школьном курсе формулу (4) обычно обходят стороной, поэтому вычислим Ех непосредственно: или

Итак, при удалении от диполя по оси х или по оси y поле спадает как r –3 . Можно доказать, что так же ведёт себя поле по любому направлению.
Выражение для потенциала в произвольной точке приведём без вывода: (т.е. при удалении

По любому направлению, кроме оси Y, потенциал спадает как r –2 ). Убедитесь, что в частных случаях эта формула приводит к уже известным нам результатам.
8. Отступление. Вспомним, что у бесконечной равномерно заряженной плоскости напряжённость поля не зависит от расстояния от плоскости (или, если угодно, спадает как r 0 ). У точечного заряда – убывает как r –2 . У диполя, как мы выяснили, убывает на бесконечности как r –3 . Попробуйте догадаться, у какого распределения зарядов напряжённость поля убывает как r –1 ; r –4 .

Взаимодействие диполя с другими зарядами
9. Теперь рассмотрим взаимодействие диполя и точечного заряда q′ (пусть q′ > 0). Рисунок в значительной степени повторяет рисунок в п. 5. Там мы рассчитали напряжённость поля диполя и, следовательно, уже знаем, какая сила действует на точечный заряд. Заметим, что это взаимодействие являет нам простейший пример нецентральных сил (вспомните, где в школьном курсе встречаются нецентральные силы между частицами).
Но ещё остались вопросы: какая сила действует на диполь? где она приложена? Можно ответить на эти вопросы сразу, без раздумий. Искомая сила F , по третьему закону Ньютона, должна быть равна – F ′ и должна быть приложена на одной прямой с F ′ . Быть может, кого-то удивит, что равнодействующая двух сил, действующих на заряды +q и –q диполя, оказалась приложена где-то в стороне от диполя. Что это значит? Ничего не значит. А что значит, что равнодействующая сил тяжести, действующих на бублик, приложена в центре дырки? Равнодействующая двух сил никакого особого смысла не имеет, она просто во всех отношениях заменяет несколько (или даже бесчисленное множество) сил в фундаментальных уравнениях механики. (Объективности ради отметим, что есть весьма известные авторы, для которых такая точка зрения неприемлема. Они предпочитают говорить, что на диполь со стороны точечного заряда действует сила, приложенная к самому диполю, и ещё момент сил).
10 . Найдите силу и энергию взаимодействия двух диполей, у которых векторы р 1 и р 2 лежат на одной прямой. Расстояние между диполями x.
Сосчитаем суммарную энергию зарядов второго диполя в поле первого (см. п. 7):

Ясно, что диполи, обращённые друг к другу разноимёнными полюсами (как на рисунке), притягиваются (этому соответствует знак «–» в выражении для W), при перевороте одного из диполей энергия сменит знак.
Не будем больше воспроизводить довольно однообразные выкладки и сразу выпишем выражение для величины силы взаимодействия этих диполей (проверьте!):
11. Найдите энергию взаимодействия двух диполей, у которых р 1 лежит на прямой, соединяющей диполи, а р 2 перпендикулярен к ней. Расстояние между диполями x. (Проверьте себя – ответ очевиден.)
12 . Найдите энергию взаимодействия двух диполей, у которых векторы р 1 и р 2 параллельны друг другу и оба перпендикулярны оси х, на которой расположены диполи.

Дополнительные замечания
13. Итак, диполь являет нам простейший пример системы зарядов с полным зарядом Q = 0. Как мы видели, потенциал поля диполя на больших расстояниях от него убывает как r –2 . Нельзя ли обобщить этот результат на более общий случай?
Можно обобщить понятие дипольного момента так, чтобы оно характеризовало любое распределение зарядов. В частности, для системы n точечных зарядов дипольный момент определяют так:
. (5)

Легко видеть, что эта величина аддитивна. Можно доказать, что Р при Q = 0 не зависит от выбора начала отсчёта. Убедитесь, что в частном случае эта формула переходит в (1).
Сосчитайте дипольный момент Р ряда простых распределений зарядов (во всех случаях расстояние между ближайшими зарядами l ).
Можно было бы вести речь и о непрерывных распределениях зарядов, но тогда вместо сумм в (2) и (5) пришлось бы писать интегралы по объёму.
Полученные выше результаты подсказывают нам, в чём значение дипольного момента. И действительно, можно в общем случае доказать, что чем дальше мы отойдём от произвольной системы зарядов с полным зарядом Q = 0 и дипольным моментом Р ≠ 0, тем её поле будет ближе к рассмотренному нами полю элементарного диполя с дипольным моментом Р .
Можно было бы пойти по этому пути дальше и рассмотреть поле системы зарядов с Q = 0 и P = 0. Один из самых простых примеров такой системы представлен на рис. а – это так называемый квадруполь. Потенциал поля квадруполя убывает на бесконечности как r –3 .
Ряд «точечный заряд – диполь – квадруполь...» можно продолжать и далее. Общее название таких объектов мультиполь. Но мы на этом остановимся.

14. При помещении атома в электрическое поле силы, приложенные к ядру и к электронной оболочке, направлены в разные стороны. Под действием этих сил атом приобретает дипольный момент Р , совпадающий по направлению с направлением напряжённости внешнего поля Е 0 .
Конечно, молекулы тоже приобретают во внешнем поле дипольный момент (но для них, вообще говоря, несправедливо предыдущее утверждение о направлении вектора Р ).
Но многие молекулы имеют дипольные моменты и в отсутствие внешнего поля. Причём эти собственные дипольные моменты обычно намного превышают наведённые моменты (если говорить об обычных, достижимых в лаборатории полях). Для множества процессов в природе (в частности, для существования жизни) чрезвычайно важно, что у молекулы воды есть дипольный момент.
«Трудно вообразить, на что был бы похож мир, если бы атомы в молекуле Н 2 О были расположены по прямой линии, как в молекуле СО 2 ; вероятно, наблюдать это было бы некому» (Э.Парселл . Электричество и магнетизм. – М., 1975).

Ответы
К п. 8 . Система зарядов, у которой напряжённость поля убывает на бесконечности как r –1 , – это бесконечная равномерно заряженная нить.
К п. 11 . При перемещении первого диполя вдоль оси х на его заряды действуют со стороны второго диполя силы, перпендикулярные этой оси, т.е. никакая работа при этом не совершается, значит, W = 0.
К п. 12 . Для упрощения расчёта надо удачно выбрать способ перевода одного из диполей из бесконечности в интересующее нас состояние. Удобно сначала перемещать его вдоль оси х, ориентировав его вектор дипольного момента вдоль оси (при этом работа сил взаимодействия диполей равна нулю), а потом повернуть его на 90°. При повороте второго диполя внешние силы должны совершить работу (см. п. 2) . Это и есть энергия взаимодействия диполей.
К п. 13 . Дипольные моменты равны: а) 0 ; б) 2qlj ;
в) 0; г) –3qli (здесь i и j – единичные векторы в направлениях осей X и Y соответственно).