Использование баз данных и информационных систем. Объектно-ориентированная модель баз данных Объектно ориентированная модель данных пример

Объектно-ориентированная модель

В объектно-ориентированной модели при представлении данных имеется возможность идентифицировать отдельные записи базы данных. Между записями и функциями их обработки устанавливаются взаимосвязи с помощью механизмов, подобных соответствующим средствам в объектно-ориентированных языках программирования.

Стандартизированная объектно-ориентированная модель описана в рекомендациях стандарта ODMG-93 (Object Database Management Group - группа управления объектно-ориентированными базами данных).

Рассмотрим упрощенную модель объектно-ориентированной БД. Структура объектно-ориентированной БД графически представима в виде дерева, узлами которого являются объекты. Свойства объектов описываются некоторым стандартным типом или типом, конструируемым пользователем (определяется как class). Значение свойства типа class есть объект, являющийся экземпляром соответствующего класса. Каждый объект-экземпляр класса считается потомком объекта, в котором он определен как свойство. Объект-экземпляр класса принадлежит своему классу и имеет одного родителя. Родовые отношения в БД образуют связную иерархию объектов. Пример логической структуры объектно-ориентированной БД библиотечного дела приведен на рис. 2.9. Здесь объект типа Библиотека является родительским для объектов-экземпляров классов Абонент, Каталог и Выдача. Различные объекты типа Книга могут иметь одного или разных родителей. Объекты типа Книга, имеющие одного и того же родителя, должны различаться, по крайней мере, инвентарным номером (уникален для каждого экземпляра книги), но имеют одинаковые значения свойств isbn, удк, название и автор.

Логическая структура объектно-ориентированной БД внешне похожа на структуру иерархической БД. Основное различие между ними состоит в методах манипулирования данными.

Для выполнения действий над данными в рассматриваемой модели БД применяются логические операции, усиленные объектно-ориентированными механизмами инкапсуляции, наследования и полиморфизма.

Инкапсуляция ограничивает область видимости имени свойства пределами того объекта, в котором оно определено. Так, если в объект типа Каталог добавить свойство, задающее телефон автора книги и имеющее название телефон, то мы получим одноименные свойства у объектов Абонент и Каталог. Смысл такого свойства будет определяться тем объектом, в который оно инкапсулировано.

Наследование, наоборот, распространяет область видимости свойства на всех потомков объекта. Так, всем объектам типа Книга, являющимся потомками объекта типа Каталог, можно приписать свойства объекта-родителя: isbn, удк, название и автор. Если необходимо расширить действие механизма наследования на объекты, не являющиеся непосредственными родственниками (например, между двумя потомками одного родителя), то в их общем предке определяется абстрактное свойство типа abs. Так, определение абстрактных свойств билет и номер в объекте Библиотека приводит к наследованию этих свойств всеми дочерними объектами Абонент, Книга и Выдача. Не случайно поэтому значения свойства билет классов Абонент и Выдача, показанных на рис. 2.9, являются одинаковыми - 00015.

Полиморфизм в объектно-ориентированных языках программирования означает способность одного и того же программного кода работать с разнотипными данными. Другими словами, он означает допустимость в объектах разных типов иметь методы (процедуры или функции) с одинаковыми именами. Во время выполнения объектной программы одни и те же методы оперируют с разными объектами в зависимости от типа аргумента. Применительно к рассматриваемому примеру полиморфизм означает, что объекты класса Книга, имеющие разных родителей из класса Каталог, могут иметь разный набор свойств. Следовательно, программы работы с объектами класса Книга могут содержать полиморфный код.

Поиск в объектно-ориентированной БД состоит в выяснении сходства между объектом, задаваемым пользователем, и объектами, хранящимися в БД.

Рис. 2.9 Логическая структура БД библиотечного дела

Основным достоинством объектно-ориентированной модели данных в сравнении с реляционной является возможность отображения информации о сложных взаимосвязях объектов. Объектно-ориентированная модель данных позволяет идентифицировать отдельную запись базы данных и определять функции их обработки.

Недостатками объектно-ориентированной модели являются высокая понятийная сложность, неудобство обработки данных и низкая скорость выполнения запросов.

К объектно-ориентированным СУБД относятся POET, Jasmine, Versant, O2, ODB-Jupiter, Iris, Orion, Postgres.

Банки данных, как целое, обычно классифицируют по экономико-правовым признакам.

По условиям предоставления услуг различают бесплатные и платные банки, которые, в свою очередь, делятся на коммерческие и бесприбыльные (научные, библиотечные или социально-значимые).

По форме собственности БнД делятся на государственные и негосударственные. По степени доступности различают общедоступные и с ограниченным кругом пользователей.

Другие виды классификации связаны с отдельными компонентами БнД.

1. Разработка банков данных состоит из 4-х этапов:

1этап. Формирование и анализ требований к системе:

Составляется спецификация системы, включающая список задач, которые должен решать БнД;

Перечень конечных пользователей и их функций;

Перечень требований к БД;

Составляется схема документооборота в организации.

2 этап. Концептуальное проектирование: создается информационная модель системы без привязки к типу ЭВМ и типу системных программных средств; строится инфологическая модель базы данных, которая наиболее полно описывает предметную область в терминах пользователя.

3 этап. Проектирование реализации: выбирается вычислительная система, системные программные средства и СУБД; проектируется структура данных и строится даталогическая модель БД (схема БД), которая представляет собой описание логической структуры БД на языке конкретной выбранной СУБД.

4 этап. Физическая реализация, которая включает в себя создание и загрузку данных в БД, разработку и отладку прикладных программ для работы с базой данных, написание документации. На этом этапе строится физическая модель БД, которая описывает используемые запоминающие устройства, способы физической организации данных. Описание физической структуры БД называют схемой хранения. В настоящее время наблюдается тенденция к сокращению этого вида работ.

2. Основные задачи, решаемые персоналом банка данных

В состав персонала БнД входят разные специалисты: администраторы БнД, системные аналитики, системные и прикладные программисты, операторы, специалисты по техническим средствам, по маркетингу и др.

Перечислим основные функции и задачи, решаемые персоналом при разработке и эксплуатации базы данных:

1) анализ предметной области (определение потребностей конечных пользователей, построение информационной модели предметной области, выявление ограничений целостности);

2) проектирование структуры базы данных (определение состава и структуры файлов БД, описание ее схемы на языке описания данных);

3) задание ограничений целостности БД;

4) загрузка и ведение БД (к ведению БД относится изменение, удаление и добавление записей); разработка технологии загрузки и ведения; разработка форм ввода данных; ввод и контроль данных;

5) защита данных (разграничение пользователей, выбор и проверка средств защиты, фиксация попыток несанкционированного доступа);

6) обеспечение восстановления БД;

7) анализ эффективности БнД и развитие системы;

8) работа с пользователями (сбор откликов, обучение);

9) сопровождение системного программного обеспечения (приобретение, установка и развитие);

10) организационно-методическая работа (выбор методов проектирования и модернизации, планирование развития БнД, разработка документации).

3. Пользователи банков данных

Как любой программно-организационно-техничеcкий комплекс, банк данных существует во времени и в пространстве. У этого есть определенные этапы разработки:

Проектирование,

Реализация,

Поддержка,

Обновление и разработка,

Полная реорганизация.

На каждом этапе существования различные категории потребителей соединяются с банком данных.

Конечные пользователи

Это - основная категория пользователей, у которых интересы связаны с банком данных. В зависимости от особенностей создаваемого банка данных может по существу отличаться кругом его конечных пользователей. Это могут быть случайные потребители, адресующиеся к БД время от времени к базе данных после получения некоторой информации, и могут быть обычные пользователи. Случайных потребителей можно рассмотреть как возможных клиентов фирмы, просматривающих каталог постановки или служб с обобщенным или подробным описанием. Сотрудники, работающие с программами, специально разработанными для них, кто обеспечивает автоматику их действия в производительности функций, могут быть обычными пользователями. Например, у администратора, планирующего работу вспомогательного подразделения компьютерной фирмы, есть программа, которая помогает ему планировать и располагать текущие заказы по инструкции, контролировать ход их производительности, упорядочить на складе необходимые аксессуары для новых заказов. Главные, специальные знания, которые от конечных пользователей не должны быть требованы в области средств языка и вычислительной техники.

Администраторы банка данных

Это - группа пользователей, которая в начальной стадии разработки банка данных ответственна за его оптимальное устройство с точки зрения одновременной работы набора конечных пользователей, в поддержке, этап ответственен за правильность работы данного штабеля информации в многопользовательском режиме. При разработке и этапе реорганизации эта группа ответственна за возможность корректной реорганизации штабеля без изменения или завершения его текущего обслуживания.

Разработчики и администраторы приложений

Эта группа пользователей, которая функционирует во время проектирования, создания и реорганизацию банка данных. Администраторы приложений координируют работу разработчиков разработкой определенного приложения или группой приложений, объединенных в функциональной подсистеме. Разработчики определенных приложений работают с той частью информации от базы данных, которая требуется для определенного приложения.

Не в каждом банке данных любой тип пользователей может быть выбран. Известно, что разработкой информационных систем с использованием табличного СУБД администратор банка данных, администратор приложений и разработчик часто существовали в одном человеке. Однако при создании современных трудных корпоративных баз данных, которые используются для автоматики всех или больших частей бизнес-процессов в большой фирме или корпорации, может существовать и группы администраторов приложений и отделы разработчиков. Самые трудные режимы работы возлагаются на группу администраторов БД.

Рассмотрим их более детально.

Часть группы администратора БнД должна быть:

Системные комментаторы;

Разработчики структур данных и внешнего вида относительно банка данных информационной поддержки;

Разработчики технологических процессов обработки данных;

Системные и прикладные программисты;

Действующие компании и эксперты в ремонтной службе.

Вопрос коммерческого банка данных, играет важную роль, продавая экспертов.

Основные функции группы администраторов БД

1. Исследование области данных: описание области данных, укладка текста ограничений целостности, определение состояния (доступность, конфиденциальность) информация, определение потребностей потребителей, определение соответствия "потребители данных", определение височных объемом характеристик обработки данных.

2. Разработка строения БД: определение сочинения и строение файлов БД и связи промежуточный, выбор методов оптимизации данных и методов доступа для информации, описания БД на языке описания данных (ЯОД).

3. Задание ограничений целостности в описании структуры БД и процедурах обработки БД:

Задание декларативных ограничений целостности, свойственной от области данных;

Определение динамичных ограничений целостности, свойственной от области данных в ходе изменения информации, хранившей в БД;

Определение ограничений целостности вызывается строением БД;

Разработка процедур поддержки целостности БД при вводе и корректировке данных;

Определение ограничений целостности параллельной работой потребителей в многопользовательском режиме.

4. Инициирование загрузки и руководство БД

Разработка техники инициирования загрузки БД, который будет отличаться от процедуры изменения и добавления с данными при регулярном использовании базы данных;

Разработка техники проверки введенных, данных реальному состоянию области данных. Реальные объекты моделей базы данных некоторой области данных и корреляции промежуточный, и в момент начала текущего ремонта эта модель должны соответствовать полностью состоянию объектов области данных сейчас ко времени;

Согласно разработанной технике инициирования загрузки проектирования системы инициирования ввода данных может быть необходимым.

5. Предохранение данных

Определение системы паролей, принципов пристрелки потребителей, создания групп потребителей, обладающих идентичными правами доступа к данным;

Разработка принципов предохранения определенных данных и объектов разработки; разработка специализированных методов кодирования информации при ее циркуляции в локальных и глобальных информационных сетях;

Разработка средств фиксации доступа к данным и попыткам нарушения системы защиты;

Тестирование системы защиты;

Исследование случаев нарушения системы защиты и разработки динамичных методов предохранения информации в БД.

6. Поддержка восстановления БД

Разработка организационных означает архивирования и принципы восстановления БД;

Разработка дополнительного матобеспечения и технологические процессы восстановления БД после отказов.

7. Исследование вызовов потребителей БД: набор статистики на символе запросов, времени включения их производительности, в соответствии с требуемыми выходными документами

8. Исследование эффективности функционирования БнД:

Исследование индексов функционирования БнД

Планирующая перестройка структуры (структурное изменение) БД и реорганизация БнД.

9. Работа с конечными пользователями:

Сбор информации об изменении области данных;

Сбор информации об оценке работ БнД;

Тренировка потребителей, консультация потребителей;

Разработка необходимой систематической и образовательной документации относительно работы конечных пользователей.

10. Приготовление и поддержка системных средств:

Исследование матобеспечения, существующего на рынке и исследовании возможности и необходимости их использования в рамках БнД;

Разработка требуемых организационных и технических программой движений для разработки БнД;

Проверка работоспособности искупленного матобеспечения перед их соединением с БнД;

Контроль соединения нового матобеспечения к БнД.

11. Организационно-систематическая работа при разработке БнД:

Выбор или создание метода разработки БД;

Определение целей и направление разработки системы в целом;

Планирование стадий развития БнД;

Разработка справочников генеральных словарей проекта БнД и концептуальной модели;

Монтаж внешних моделей разработанных приложений;

Контроль соединения нового приложения к работе БнД;

Возможность комплексного устранения неисправностей набора приложений, взаимодействующих от одного БД.

Первой формализованной и общепризнанной моделью данных была реляционная модель Кодда. В этой модели, как и во всех следующих, выделялись три аспекта - структурный, целостный и манипуляционный. Структуры данных в реляционной модели основываются на плоских нормализованных отношениях, ограничения целостности выражаются с помощью средств логики первого порядка и, наконец, манипулирование данными осуществляется на основе реляционной алгебры или равносильного ей реляционного исчисления. Как отмечают многие исследователи, своим успехом реляционная модель данных во многом обязана тому, что опиралась на строгий математический аппарат теории множеств, отношений и логики первого порядка. Разработчики любой конкретной реляционной системы считали своим долгом показать соответствие своей конкретной модели данных общей реляционной модели, которая выступала в качестве меры "реляционности" системы.

Основные трудности объектно-ориентированного моделирования данных проистекают из того, что такого развитого математического аппарата, на который могла бы опираться общая объектно-ориентированная модель данных, не существует. В большой степени поэтому до сих пор нет базовой объектно-ориентированной модели. С другой стороны, некоторые авторы утверждают, что общая объектно-ориентированная модель данных в классическом смысле и не может быть определена по причине непригодности классического понятия модели данных к парадигме объектной ориентированности.

Один из наиболее известных теоретиков в области моделей данных Беери предлагает в общих чертах формальную основу ООБД, далеко не полную и не являющуюся моделью данных в традиционном смысле, но позволяющую исследователям и разработчикам систем ООБД по крайней мере говорить на одном языке (если, конечно, предложения Беери будут развиты и получат поддержку). Независимо от дальнейшей судьбы этих предложений мы считаем полезным кратко их пересказать.

Во-первых, следуя практике многих ООБД, предлагается выделить два уровня моделирования объектов: нижний (структурный) и верхний (поведенческий). На структурном уровне поддерживаются сложные объекты, их идентификация и разновидности связи "isa". База данных - это набор элементов данных, связанных отношениями "входит в класс" или "является атрибутом". Таким образом, БД может рассматриваться как ориентированный граф. Важным моментом является поддержание наряду с понятием объекта понятия значения (позже мы увидим, как много на этом построено в одной из успешных объектно-ориентированных СУБД O2).



Важным аспектом является четкое разделение схемы БД и самой БД. В качестве первичных концепций схемного уровня ООБД выступают типы и классы. Отмечается, что во всех системах, использующих только одно понятие (либо тип, либо класс), это понятие неизбежно перегружено: тип предполагает наличие некоторого множества значений, определяемого структурой данных этого типа; класс также предполагает наличие множества объектов, но это множество определяется пользователем. Таким образом, типы и классы играют разную роль, и для строгости и недвусмысленности требуется одновременная поддержка обоих понятий.

Беери не представляет полной формальной модели структурного уровня ООБД, но выражает уверенность, что текущего уровня понимания достаточно, чтобы формализовать такую модель. Что же касается поведенческого уровня, предложен только общий подход к требуемому для этого логическому аппарату (логики первого уровня недостаточно).

Важным, хотя и недостаточно обоснованным предположением Беери является то, что двух традиционных уровней - схемы и данных - для ООБД недостаточно. Для точного определения ООБД требуется уровень мета-схемы, содержимое которой должно определять виды объектов и связей, допустимых на схемном уровне БД. Мета-схема должна играть для ООБД такую же роль, какую играет структурная часть реляционной модели данных для схем реляционных баз данных.

Имеется множество других публикаций, отноcящихся к теме объектно-ориентированных моделей данных, но они либо затрагивают достаточно частные вопросы, либо используют слишком серьезный для этого обзора математический аппарат (например, некоторые авторы определяют объектно-ориентированную модель данных на основе теории категорий).

Для иллюстрации текущего положения дел мы кратко рассмотрим особенности конкретной модели данных, применяемой в объектно-ориентированной СУБД O2 (это, конечно, тоже не модель данных в классическом смысле).

В O2 поддерживаются объекты и значения. Объект - это пара (идентификатор, значение), причем объекты инкапсулированы, т.е. их значения доступны только через методы - процедуры, привязанные к объектам. Значения могут быть атомарными или структурными. Структурные значения строятся из значений или объектов, представленных своими идентификаторами, с помощью конструкторов множеств, кортежей и списков. Элементы структурных значений доступны с помощью предопределенных операций (примитивов).

Возможны два вида организации данных: классы, экземплярами которых являются объекты, инкапсулирующие данные и поведение, и типы, экземплярами которых являются значения. Каждому классу сопоставляется тип, описывающий структуру экземпляров класса. Типы определяются рекурсивно на основе атомарных типов и ранее определенных типов и классов с применением конструкторов. Поведенческая сторона класса определяется набором методов.

Объекты и значения могут быть именованными. С именованием объекта или значения связана долговременность его хранения (persistency): любые именованные объекты или значения долговременны; любые объект или значение, входящие как часть в другой именованный объект или значение, долговременны.

С помощью специального указания, задаваемого при определении класса, можно добиться долговременности хранения любого объекта этого класса. В этом случае система автоматически порождает значение-множество, имя которого совпадает с именем класса. В этом множестве гарантированно содержатся все объекты данного класса.

Метод - программный код, привязанный к конкретному классу и применимый к объектам этого класса. Определение метода в O2 производится в два этапа. Сначала объявляется сигнатура метода, т.е. его имя, класс, типы или классы аргументов и тип или класс результата. Методы могут быть публичными (доступными из объектов других классов) или приватными (доступными только внутри данного класса). На втором этапе определяется реализация класса на одном из языков программирования O2 (подробнее языки обсуждаются в следующем разделе нашего обзора).

В модели O2 поддерживается множественное наследование классов на основе отношения супертип/подтип. В подклассе допускается добавление и/или переопределение атрибутов и методов. Возможные при множественном наследовании двусмысленности (по именованию атрибутов и методов) разрешаются либо путем переименования, либо путем явного указания источника наследования. Объект подкласса является объектом каждого суперкласса, на основе которого порожден данный подкласс.

Поддерживается предопределенный класс "Оbject", являющийся корнем решетки классов; любой другой класс является неявным наследником класса "Object" и наследует предопределенные методы ("is_same", "is_value_equal" и т.д.).

Специфической особенностью модели O2 является возможность объявления дополнительных "исключительных" атрибутов и методов для именованных объектов. Это означает, что конкретный именованный объект-представитель класса может обладать типом, являющимся подтипом типа класса. Конечно, с такими атрибутами не работают стандартные методы класса, но специально для именованного объекта могут быть определены дополнительные (или переопределены стандартные) методы, для которых дополнительные атрибуты уже доступны. Подчеркивается, что дополнительные атрибуты и методы привязываются не к конкретному объекту, а к имени, за которым в разные моменты времени могут стоять вообще говоря разные объекты. Для реализации исключительных атрибутов и методов требуется развитие техники позднего связывания.

В следующем разделе мы среди прочего рассмотрим особенности языков программирования и запросов системы O2, которые, конечно, тесно связаны со спецификой модели данных.

Объектно-ориентированная модель

В объектно-ориентированной модели при представлении данных имеется возможность идентифицировать отдельные записи базы. Между записями базы данных и функциями их обработки устанавливаются взаимосвязи с помощью механизмов, подобных соответствующим средствам в объектно-ориентированных языках программирования.

Стандартизованная объектно-ориентированная модель описана в рекомендациях стандарта ODMG-93 (Object Database Management Group – Группа управления объектно-ориентированными базами данных). Реализовать в полном объеме рекомендации ODMG-93 пока не удается. Для иллюстрации ключевых идей рассмотрим несколько упрошенную модель объектно-ориентированной БД.

Структура объектно-ориентированной БД (например, Versant Object Database, Object Store и др.) графически представима в виде дерева, узлами которого являются объекты. Свойства объектов описываются некоторым стандартным типом (например, строковым – string) или типом, конструируемым пользователем (определяется как class).

Значением свойства типа string является строка символов. Значение свойства типа class есть объект, являющийся экземпляром соответствующего класса. Каждый объект – экземпляр класса считается потомком объекта, в котором он определен как свойство. Объект – экземпляр класса принадлежит своему классу и имеет одного родителя. Родовые отношения в БД образуют связную иерархию объектов.

Логическая структура объектно-ориентированной БД внешне похожа на структуру иерархической БД. Основное отличие между ними состоит в методах манипулирования данными.

Для выполнения действий над данными в рассматриваемой модели БД применяются логические операции, усиленные объектно-ориентированными механизмами инкапсуляции, наследования и полиморфизма.

Ограниченно могут применяться операции, подобные командам языка SQL (например, для создания БД).

Создание и модификация БД сопровождаются автоматическим формированием и последующей корректировкой индексов (индексных таблиц), содержащих информацию для быстрого поиска данных.

Рассмотрим кратко понятия инкапсуляции, наследования и полиморфизма применительно к объектно-ориентированной модели БД.

Инкапсуляция ограничивает область видимости имени свойства пределами того объекта, в котором оно определено.

Наследование, наоборот, распространяет область видимости свойства на всех потомков объекта.

Полиморфизм в объектно-ориентированных языках программирования означает способность одного и того же программного кода работать с разнотипными данными. Другими словами, он означает допустимость в объектах разных типов иметь методы (процедуры или функции) с одинаковыми именами. Во время выполнения объектной программы одни и те же методы оперируют с разными объектами в зависимости от типа аргумента. Поиск в объектно-ориентированной БД состоит в выяснении сходств между объектом, задаваемым пользователем, и объектами, хранящимися в БД. Определяемый пользователем объект, называемый объектом-целью (свойство объекта имеет тип goal), в общем случае может представлять собой подмножество всей хранимой в БД иерархии объектов. Объект-цель, а также результат выполнения запроса могут храниться в самой БД.

Основным достоинством объектно-ориентированной модели данных в сравнении с реляционной является возможность отображения информации о сложных взаимосвязях объектов. Объектно-ориентированная модель данных позволяет идентифицировать отдельную запись базы данных и определять функции их обработки.

Недостатками объектно-ориентированной модели являются высокая понятийная сложность, неудобство обработки данных и низкая скорость выполнения запросов.

Типы данных

Первоначально СУБД применялись преимущественно для решения финансово-экономических задач. При этом независимо от модели представления в базах данных использовались следующие основные типы данных:

  • числовые. Примеры значений данных: 0,43; 328; 2Е+5;
  • символьные (алфавитно-цифровые). Примеры значений данных: "пятница", "строка", "программист";
  • даты, задаваемые с помощью специального типа "Дата" или как обычные символьные данные. Примеры значений данных: 1.12.97, 23/2/1999.

В разных СУБД эти типы могли несущественно отличаться друг от друга по названию, диапазону значений и виду представления. Впоследствии is новых областях применения стали появляться специализированные системы обработки данных, например геоинформациониые, обработки видеоизображений и т.д. В связи с этим разработчики стали вводить в традиционные СУБД новые типы данных. К числу сравнительно новых типов данных можно отнести следующие:

  • временны́е и дата-временны́е, предназначенные для хранения информации о времени и (или) дате. Примеры значений данных: 31.01.85 (дата), 9:10:03 (время), 6.03.1960 12:00 (дата и время);
  • символьные переменной длины, предназначенные для хранения текстовой информации большой длины, например документа;
  • двоичные, предназначенные для хранения графических объектов, аудио- и видеоинформации, пространственной, хронологической и другой специальной информации. Например, в MS Access таким типом является тип данных "Поле объекта OLE", который позволяет хранить в БД графические данные в формате BMP (Bitmap) и автоматически их отображать при работе с БД;
  • гиперссылки (hyperlinks), предназначенные для хранения ссылок на различные ресурсы (узлы, файлы, документы и т.д.), находящиеся вне базы данных, например в сети Интернет, корпоративной сети интранет или на жестком диске компьютера.

В современных СУБД с различными моделями данных могут использоваться все перечисленные типы данных.

Объектно-ориентированная база данных (ООБД) - база данных, в которой данные моделируются в виде объектов, их атрибутов, методов и классов.

Объектно-ориентированные базы данных обычно рекомендованы для тех случаев, когда требуется высокопроизводительная обработка данных, имеющих сложную структуру.

В манифесте ООБД предлагаются обязательные характеристики, которым должна отвечать любая ООБД. Их выбор основан на 2 критериях: система должна быть объектно-ориентированной и представлять собой базу данных.

Обязательные характеристики

1. Поддержка сложных объектов. В системе должна быть предусмотрена возможность создания составных объектов за счет применения конструкторов составных объектов. Необходимо, чтобы конструкторы объектов были ортогональны, то есть любой конструктор можно было применять к любому объекту.

2. Поддержка индивидуальности объектов. Все объекты должны иметь уникальный идентификатор, который не зависит от значений их атрибутов.

3. Поддержка инкапсуляции. Корректная инкапсуляция достигается за счет того, что программисты обладают правом доступа только к спецификации интерфейса методов, а данные и реализация методов скрыты внутри объектов.

4. Поддержка типов и классов. Требуется, чтобы в ООБД поддерживалась хотя бы одна концепция различия между типами и классами. (Термин «тип» более соответствует понятию абстрактного типа данных. В языках программирования переменная объявляется с указанием ее типа. Компилятор может использовать эту информацию для проверки выполняемых с переменной операций на совместимость с ее типом, что позволяет гарантировать корректность программного обеспечения. С другой стороны класс является неким шаблоном для создания объектов и предоставляет методы, которые могут применяться к этим объектам. Таким образом, понятие «класс» в большей степени относится ко времени исполнения, чем ко времени компиляции.)

5. Поддержка наследования типов и классов от их предков. Подтип, или подкласс, должен наследовать атрибуты и методы от его супертипа, или суперкласса, соответственно.

6. Перегрузка в сочетании с полным связыванием. Методы должны применяться к объектам разных типов. Реализация метода должна зависеть от типа объектов, к которым данный метод применяется. Для обеспечения этой функциональности связывание имен методов в системе не должно выполняться до времени выполнения программы.

7. Вычислительная полнота. Язык манипулирования данными должен быть языком программирования общего назначения.



8. Набор типов данных должен быть расширяемым. Пользователь должен иметь средства создания новых типов данных на основе набора предопределенных системных типов. Более того, между способами использования системных и пользовательских типов данных не должно быть никаких различий.

ОО СУБД

Объектно-ориентированные базы данных – базы данных, в которых информация представлена в виде объектов, как в объектно-ориентированных языках программирования.

Применять или не применять объектно-ориентированные системы управления базами данных (ООСУБД) в реальных проектах сегодня? В каких случаях их применять, а в каких нет?

Вот преимущества использования ООСУБД:

· Отсутствует проблема несоответствия модели данных в приложении и БД (impedance mismatch). Все данные сохраняются в БД в том же виде, что и в модели приложения.

· Не требуется отдельно поддерживать модель данных на стороне СУБД.

· Все объекты на уровне источника данных строго типизированы. Больше никаких строковых имен колонок! Рефакторинг объектно-ориентированной базы данных и работающего с ней кода теперь автоматизированный, а не однообразный и скучный процесс.

Стандарт ODMG

Первый манифест формально являлся всего лишь статьей, представленной на Конференцию по объектно-ориентированным и дедуктивным базам данных группой частных лиц. Как вы могли видеть в предыдущем подразделе, требования Манифеста были скорее эмоциональными, чем явно специфицированными. В 1991 г. был образован консорциум ODMG (тогда эта аббревиатура раскрывалась как Object Database Management Group , но впоследствии приобрела более широкую трактовку – Object Data Management Group ). Консорциум ODMG тесно связан с гораздо более многочисленным консорциумом OMG (Object Management Group ), который был образован двумя годами раньше. Основной исходной целью ODMG была выработка промышленного стандарта объектно-ориентированных баз данных (общей модели). За основу была принята базовая объектная модель OMG COM (Core Object Model ). В течение более чем десятилетнего существования ODMG опубликовала три базовых версии стандарта, последняя из которых называется ODMG 3.0 . 16



Забавно, что хотя ODMG (по мнению автора) вышла из OMG , в последние годы некоторые стандарты OMG опираются на объектную модель ODMG . В частности, на модель ODMG опирается спецификация языка OCL (Object Constraint Language ), являющаяся частью общей спецификации языка UML 1.4 (и UML 2.0) . В этой статье мы не ставим цель провести детальное сопоставление подходов OMG и ODMG и отсылаем заинтересованных читателей к Энциклопедии Когаловского и материалам сайтов этих консорциумов . Мы ограничимся кратким изложением основных идей, содержащихся в стандарте ODMG -3.

Архитектура ODMG

Предлагаемая ODMG архитектура показана на рис. 2.1. В этой архитектуре определяются способ хранения данных и разные виды пользовательского доступа к этому “хранилищу данных” 17 . Единое хранилище данных доступно из языка определения данных, языка запросов и ряда языков манипулирования данными. 18 На рис. 2.1 ODL означает Object Definition Language (язык определения объектов) , OQL – Object Query Language (язык объектных запросов) и OML – Object Manipulation Language (язык манипулирования объектами) .

Рис. 2.1. Архитектура ODMG

Центральной в архитектуре является модель данных , представляющая организационную структуру, в которой сохраняются все данные, управляемые ООСУБД. Язык определения объектов, язык запросов и языки манипулирования разработаны таким образом, что все их возможности опираются на модель данных. Архитектура допускает существование разнообразных реализационных структур для хранения моделируемых данных, но важным требованием является то, что все программные библиотеки и все поддерживающие инструментальные средства обеспечиваются в объектно-ориентированных рамках и должны сохраняться в согласовании с данными.

Основными компонентами архитектуры являются следующие.

  • Объектная модель данных. Все данные, сохраняемые ООСУБД, структуризуются в терминах конструкций модели данных. В модели данных определяется точная семантика всех понятий (более подробно см. ниже).
  • Язык определения данных (ODL). Схемы баз данных описываются в терминах языка ODL , в котором конструкции модели данных конкретизируются в форме языка определения. ODL позволяет описывать схему в виде набора интерфейсов объектных типов, что включает описание свойств типов и взаимосвязей между ними, а также имен операций и их параметров. ODL не является полным языком программирования; реализация типов должна быть выполнена на одном из языков категории OML . Кроме того, ODL является виртуальным языком в том смысле, что в стандарте ODMG не требуется его реализация в программных продуктах ООСУБД, которые считаются соответствующими стандарту. Допускается поддержка этими продуктами эквивалентных языков определения, включающих все возможности ODL , но адаптированных под особенности конкретной системы. Тем не менее, наличие спецификации языка ODL в стандарте ODMG является важным, поскольку в языке конкретизируются свойства модели данных.
  • Язык объектных запросов (ODL). Язык имеет синтаксис, похожий на синтаксис языка SQL, но опирается на семантику объектной модели ODMG . В стандарте допускается прямое использование OQL и его встраивание в один из языков категории OML .

Реляционная модель данных

Почти все современные системы основаны на реляционной (relational) модели управления базами данных. Название реляционная связано с тем, что каждая запись в такой базе данных содержит информацию, относящуюся только к одному конкретному объекту.

В реляционной СУБД все обрабатываемые данные представляются в виде плоских таблиц. Информация об объектах определенного вида представляется в табличном виде: в столбцах таблицы сосредоточены различные атрибуты объектов, а строки предназначены для сведения описаний всех атрибутов к отдельным экземплярам объектов.

Модель, созданная на этапе инфологического моделирования, в наибольшей степени удовлетворяет принципам реляционности. Однако для приведения этой модели к реляционной необходимо выполнить процедуру, называемую нормализацией .

Теория нормализации оперирует с пятью нормальными формами . Эти формы предназначены для уменьшения избыточности информации, поэтому каждая последующая нормальная форма должна удовлетворять требованиям предыдущей и некоторым дополнительным условиям. При практическом проектировании баз данных четвертая и пятая формы, как правило, не используются. Мы ограничились рассмотрением первых четырех нормальных форм.

Введем понятия, необходимые для понимания процесса приведения модели к реляционной схеме.

Отношение - абстракция описываемого объекта как совокупность его свойств. Проводя инфологический этап проектирования, мы говорили об абстракции объектов и приписывали им некоторые свойства. Теперь же, проводя концептуальное проектирование, мы переходим к следующему уровню абстракции. На данном этапе объектов, как таковых, уже не существует. Мы оперируем совокупностью свойств, которые и определяют объект.

Экземпляр отношения - совокупность значений свойств конкретного объекта.

Первичный ключ - идентифицирующая совокупность атрибутов, т.е. значение этих атрибутов уникально в данном отношении. Не существует двух экземпляров отношения содержащих одинаковые значения в первичном ключе.

Простой атрибут - атрибут, значения которого неделимы.

Сложный атрибут - атрибут, значением которого является совокупность значений нескольких различных свойств объекта или несколько значений одного свойства.

Понятия сущности..

Домен

Понятие домена более специфично для баз данных, хотя и имеет некоторые аналогии с подтипами в некоторых языках программирования. В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементу типа данных. Если вычисление этого логического выражения дает результат "истина", то элемент данных является элементом домена.

Наиболее правильной интуитивной трактовкой понятия домена является понимание домена как допустимого потенциального множества значений данного типа. Например, домен "Имена" в нашем примере определен на базовом типе строк символов, но в число его значений могут входить только те строки, которые могут изображать имя (в частности, такие строки не могут начинаться с мягкого знака).

Следует отметить также семантическую нагрузку понятия домена: данные считаются сравнимыми только в том случае, когда они относятся к одному домену. В нашем примере значения доменов "Номера пропусков" и "Номера групп" относятся к типу целых чисел, но не являются сравнимыми. Заметим, что в большинстве реляционных СУБД понятие домена не используется, хотя в Oracle V.7 оно уже поддерживается.

При наличии большого количества экспериментальных проектов (и даже коммерческих систем) отсутствует общепринятая объектно-ориентированная модель данных, и не потому, что нет ни одной разработанной полной модели, а по причине отсутствия общего согласия о принятии какой-либо модели. На самом деле, имеются и более конкретные проблемы, связанные с разработкой декларативных языков запросов, выполнением и оптимизацией запросов, формулированием и поддержанием ограничений целостности, синхронизацией доступа и управлением транзакциями и т.д.

Объектно-ориентированная модель (рис. 3) позволяет создавать, хранить и использовать информацию в форме объектов. Любой объект при своем создании получает генерируемый системой уникальный идентификатор, который связан с объектом все время его существования и не меняется при изменении состояния объекта.

Рис.3. Объектно-ориентированная модель данных

Каждый объект имеет состояние и поведение. Состояние объекта - набор значений его атрибутов. Поведение объекта - набор методов (программный код), оперирующих над состоянием объекта. Значение атрибута объекта - это тоже некоторый объект или множество объектов. Состояние и поведение объекта инкапсулированы в объекте; взаимодействие объектов производится на основе передачи сообщений и выполнении соответствующих методов.

Множество объектов с одним и тем же набором атрибутов и методов образует класс объектов. Объект должен принадлежать только одному классу (если не учитывать возможности наследования). Допускается наличие примитивных предопределенных классов, объекты-экземпляры которых не имеют атрибутов: целые, строки и т.д. Класс, объекты которого могут служить значениями атрибута объектов другого класса, называется доменом этого атрибута.

Допускается порождение нового класса на основе уже существующего класса - наследование. В этом случае новый класс, называемый подклассом существующего класса (суперкласса), наследует все атрибуты и методы суперкласса. В подклассе, кроме того, могут быть определены дополнительные атрибуты и методы. Различаются случаи простого и множественного наследования. В первом случае подкласс может определяться только на основе одного суперкласса, во втором случае суперклассов может быть несколько. Если в языке или системе поддерживается единичное наследование классов, набор классов образует древовидную иерархию. При поддержании множественного наследования классы связаны в ориентированный граф с корнем, называемый решеткой классов. Объект подкласса считается принадлежащим любому суперклассу этого класса.

Наиболее широкое применение объектно-ориентированные базы данных нашли в таких областях, как системы автоматизированного конструирования/производства (CAD/CAM), системы автоматизированной разработки программного обеспечения (CASE), системы управления составными документами, т.е. в областях не традиционных для баз данных. Примерами объектно-ориентированных СУБД являются – POET, Jasmine, Versant, Iris , Orion.

2.2.4.Реляционная модель данных

В 1970 году американский математик Кодд Е.Ф. опубликовал революционную по своему содержанию статью, предложив использовать для обработки данных теорию множеств. Он утверждал, что данные нужно связывать в соответствии с их логическими взаимоотношениями (например, объединение, пересечение), а не физическими указателями. Он предложил простую модель данных, в которой все данные сведены в таблицы, состоящие из строк и столбцов, имеющих уникальные имена. Эти таблицы получили название реляций (relatio - отношение), а модель – реляционной моделью данных, построенной на понятии математических отношений и ее иногда называют также моделью Кодда. Предложения Кодда были настолько эффективны для систем баз данных, что за эту модель он был удостоен престижной премии Тьюринга в области теоретических основ вычислительной техники.

В реляционных базах все данные хранятся в простых таблицах, разбитых на строки (их называют записями) и столбцы (их называют полями), на пересечении которых расположена информация о данных. В общем виде это может быть представлено как на рис. 4.

Рис.4. Таблица реляционной БД.

У каждого столбца есть свое имя. Например, в таблице «Товар на складе» (рис. 5.) имена полей такие: Идентификатор , Товар , Название группы , Группа , Единица измерения , Цена закупочная , Цена реализации , Наличие на складе .

Рис. 5. Таблица «Товар на Складе»

Все значения в одном столбце имеют один тип. Таким образом, поля – это различные характеристики (иногда говорят – атрибуты) объекта. Значения полей в одной строке относятся к одному объекту, а различные поля отличаются именами.

Каждая запись различается уникальным ключом записи, которые бывают двух типов: первичный и вторичный.

Первичный ключ – это одно или несколько полей, однозначно идентифицирующих запись. Если первичный ключ состоит из одного поля, он называется простым, если из нескольких полей – составным ключом.

Вторичный ключ – это поле, значение которого может повторяться в нескольких записях файла, то есть он не является уникальным.

Внешний ключ подчиненной таблицы - это вторичный ключ данного отношения, который, в то же время, выполняет функции первичного ключа в главной таблице. Если по значению первичного ключа может быть найден один единственный экземпляр записи, то по значению внешнего ключа несколько (рис.6).

Рис.6. Пример использование внешнего ключа

Как правило, реляционная база данных состоит из нескольких таблиц, т.к. объединить в одной таблице все сведения, необходимые сотрудникам (пользователям БД) какой-либо организации для решения задач, не представляется возможным.

Средством эффективного доступа по ключу к записи файла является индексирование. При индексировании создается дополнительный файл, который содержит в упорядоченном виде все значения ключа файла данных. Для каждого ключа в индексном файле содержится указатель на соответствующую запись файла данных. С помощью указателя на запись в файле данных осуществляется прямой доступ к этой записи.

Для работы с реляционными базами данных в настоящее время обычно используется язык структурированных запросов (Structured Query Language - SQL). Это язык, применяемый для создания, модификации и управления данными. Язык SQL не является алгоритмическим языком программирования. Это информационно-логический язык, он основывается на реляционной алгебре и подразделяется на три части:

· операторы определения данных;

· операторы манипуляции данными (Insert, Select, Update, Delete);

· операторы определения доступа к данным.

В 1986 году язык SQL был принят в качестве стандарта ANSI (Американский Национальный Институт Стандартов) языков реляционной базы данных. Сегодня данная база рассматривается в качестве стандарта для современных информационных систем.

Таким образом, таблица является основным типом структуры данных реляционной модели. Структура таблицы определяется совокупностью столбцов. В каждой строке таблицы содержатся по одному значению в соответствующем столбце. В таблице не может быть двух одинаковых строк, общее число строк не ограничено. Столбец – это элемент данных, каждый столбец имеет имя. Один или несколько атрибутов, значения которых однозначно идентифицируют строку таблицы, являются ключом таблицы.

Достоинствами реляционной модели являются:

Простота и доступность понимания конечным пользователем - единственной информационной конструкцией является таблица;

При проектировании реляционной БД применяются строгие правила, базирующие на математическом аппарате;

Полная независимость данных. При изменении структуры изменения, которые требуют произвести в прикладных программах, минимальны;

Для построения запросов и написания, прикладных программ нет необходимости знания конкретной организации БД во внешней памяти.

Недостатками реляционной модели являются:

Относительно низкая скорость доступа и большой объем внешней памяти;

Трудность понимания структуры данных из-за появления большого количества таблиц в результате логического проектирования;

Далеко не всегда предметную область можно представить в виде совокупности таблиц.

Реляционные базы данных в настоящее время получили наибольшее распространение. Сетевые и иерархические модели считаются устаревшими, объектно-ориентированные модели пока не стандартизированы и не получили широкого распространения.